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Abstract—This paper considers the problem of estimating the 

direction of arrival (DOA) for the both incoherent and coherent 

signals from narrowband sources, located in the far field in the 

case of uniform linear array sensors. Three different methods are 

analyzed. Specifically, these methods are Music, Root-Music and 

ESPRIT. The pros and cons of these methods are identified and 

compared in light of different viewpoints. The performance of 

the three methods is evaluated, analytically, when possible, and 

by Matlab simulation. This paper can be a roadmap for 

beginners in understanding the basic concepts of DOA estimation 

issues, properties and performance.  

Keywords— Direction of Arrival (DOA); Uniform linear array 

(ULA); Music; Root-Music; ESPRIT. 

I. INTRODUCTION  

 Research in the array processing is an area of study devoted 
to processing the signals received from an antenna array and 
extracting information of interest. It has played an important 
role in widespread applications like radar, sonar, and wireless 
communications [1].  DOA estimation of the signals arriving 
from a particular direction nowadays a quite well established 
theory and many interesting papers, on this topic, are available 
in open literature.  

 During the last decades, many adaptive array processing 
algorithms have been reported in the literature. Mainly these 
algorithms, in a general view, exhibit a trade-off between 
performance and required computational complexity. High 
resolution DOA estimation is important in many sensor 
systems. High-resolution frequency estimation is important in 
different applications as the design and control of robots. 
Evidently, in such problems, the functional form of the 
underlying signals can often be assumed to be known e.g., 
(narrow-band plane waves). The quantities to be estimated are 
parameters (e.g., frequencies and DOA's of plane waves,) upon 
which the sensor outputs depend, and these parameters are 
hence assumed to be stationary [2]. Basically, there have been 
several approaches to such problems, including the so-called 
maximum likelihood (ML) method of Capon [3] and Burg's 
(maximum entropy (ME) method [4].  

 Even though, these methods are often effective in used and 
widely employed. Nerveless, these schemes are based on 
design criteria and assumptions not easily achievable. 
Therefore, due to this fact, these methods are unpractical and 
need to be improved. Pisarenko [6] was the first one who tries 
to exploit the structure of the data model. Schmidt [9] and 

Bienvenu were the first to perfectly employ the measurement 
model in the case of sensor arrays of arbitrary form. 
Alternatively, Schmidt in particular finished this by first 
deriving a complete geometric solution without the noise, then 
intelligently expanding the geometric concepts to fulfill 
acceptable approximate solution in the presence of noise. The 
resulting algorithm was called MUSIC (Multiple SIgnal 
Classification) and has been widely considered, among the 
variety of existing high-resolution algorithms. MUSIC was the 
most favorable and a leading candidate for further study and 
actual hardware implementation. However, although the 
performance advantages of MUSIC are essential, they are 
accomplished at a significant cost in computation (searching 
over parameter space) and storage (of array calibration data). 
The ESPRIT (Estimation of Signal Parameters via Rotational 
Invariance) algorithm dramatically reduces these computation 
and storage costs [4]. 

This paper focuses on how to estimate the DOA of the 
incoming signal based on aforementioned methods, based on 
uniform linear array sensors for both coherent and non 
coherent signals with different environments (numbers of array 
elements, SNR, number of snapshots). A model for receiving 
signals is developed for this purpose. Later, the model is 
subjected to computer simulation to investigate the results and 
to show the performance.  

The rest of the paper is organized as follows: section II 
reviews the theoretical basics, and the methodology used for 
this study is outlined in section III. Section IV reports the 
simulations and Results and lastly in section V focuses on the 
conclusion and further research. 

II. THEORETICAL BASICS 

In this section, we consider the theoretical basics of 

locating n radiating sources by using an array of m passive 

sensors, as shown in Fig. 1. Generally, the emitted energy 

from the sources can be electromagnetic wave and the 

receiving sensors can be any transducers that convert the 

received energy to electrical signals (antennas).  

This problem basically depends on determining how the 

"energy" is scattered over space with the source positions 

representing point sin space with concentrations of energy. 

Thus, hence, it can be named a spatial spectral estimation 

problem [7]. Meanwhile, this name is also motivated by the 
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fact that there are close ties between the source-location 

problem and the problem of temporal spectral estimation. 

 

 
Fig. 1. The set-up of the source-location problem 

The advancement of the array model relies on a number of 

simplifying assumptions. Consequently, some of these 

assumptions, which have a more general character, are listed 

below. 

 The sources are assumed to be located in the far field of 
the array.  

 Furthermore, we presume that both the sources and the 
sensors in the array are in the same plane and that the 
sources are point emitters. 

 In addition, it is presumed that the propagation medium 
is homogeneous (i.e., not dispersive), and therefore the 
waves coming at the array can be supposed to be planar. 
Under these instances, the only parameter that describes 
the source positions is the so-called angle of arrival 
(AOA), or DOA. 

 Moreover, it is presumed that the number of sources n 
is specified. The selection of n, when it is unknown, is a 
problem of remarkable importance for many 
applications, which is often referred as the detection 
problem. 

 Finally, it is assumed that the sensors in the array can be 
modeled as linear (time-invariant) systems, and thus 
both their transfer characteristics and their locations are 
known. In other words, we allege that the array is 
assumed to be calibrated [2]. 

A. Received Signal Model  

Predominately, many of the DOA algorithms rely on the 

array correlation matrix. Fig. 2 shows D signals arriving from 

D directions. Clearly, they are received by an array of M 

elements with M potential weights.  

 

 
Fig. 2. The set-up of the source-location problem 

 M-element Array with D Arriving Signals 

Each received signal  m
x k  includes additive zero mean 

Gaussian noise. It should be remarked that, the time is 

symbolized by the kth time sample. Thus, the array output y 

can be specified in the following form: 

( ) . ( )
T

y k w x k                                   (1) 

Where he received signal can be expressed as  

 

1

2

1 1 1 2 1 D

s (k)

s (k)
k [a (φ )a (φ ) a (φ )]. n(k)

:

s (k)

A . s(k) n(k)

D

X   

 

 
 
 
 
 
 

                   

(2) 

And the weights can show by 
T

1 2 3 M
w [w w w .w ]   = 

array weights. Furthermore, the rest of parameters can be 

defined as follows: 

( )s k  = vector of incident complex monochromatic signals at 

time k.  

( )n k = noise vector at each array element m, zero mean, 

variance
2

n
 . 

  i
a  = M-element array steering vector for the i  direction 

of arrival. 

A is an M×D matrix of steering vectors  i
a  and is given by: 

1 1 1 2 1 D
[a (φ ) a (φ ) a (φ )]A                    (3) 

      Thus, each of the D-complex signals arrive at angles i  

and is intercepted by the M antenna elements. It is initially 

assumed that the arriving signals are monochromatic and the 

number of arriving signals D < M. It is understood that the 

arriving signals are time varying and thus our calculations are 

based upon time snapshots of the incoming signal. Obviously, 

if the transmitters are moving, the matrix of steering vectors is 

varying with time and therefore the corresponding arrival 

angles are also changing.  

       In order to simplify the notation, let us define the M×M 

array correlation matrix xxR as  

H H H

H

ss nn

[ . ] [( )( )]

A E[s.s ]A E[n.n ]

AR A R

H H H H

xxR E x x E As n s A n   

 

 
              (4) 

 

Where  
ss

R represents the source correlation matrix and 

2
 I =  

nn n
R M M  represents the noise correlation 

matrix, whereas I = M×M   is the identity matrix. 
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     The array correlation matrix 
xx

R  and the source 

correlation matrix 
ss

R  are found by the expected value of the 

respective absolute values squared (i.e.,  .
H

xx
R E X X  , 

and .
H

ss
R E S S     ). If we do not know the exact statistics 

for the noise and signals, but we can assume that the process is 

ergodic, then we can calculate the correlation by use of a time-

averaged correlation. Hereby, in that case the correlation 

matrices are defined by 

   
K

H

xx

K 1

1
R x K .x K

k 

                                     (5) 

   
K

H

ss

K 1

1
R s K .s K

k 

                                       (6) 

    
K

H

nn

K 1

1
R n K .n K

k 

                                    (7) 

 

When the signals are uncorrelated the  
ss

R obviously has to 

be a diagonal matrix because off-diagonal elements have no 

correlation. When the signals are partly correlated,  
ss

R   is 

non-singular. When the signals are coherent,  
ss

R becomes 

singular because the rows are linear combinations of each 

other.  

Generally, the goal of DOA estimation techniques is to 

describe a function that provides a suggestion of the angles of 

arrival based upon maxima vs. angle. In view of that, this 

function is conventionally called the pseudospectrum ( )P   

and the units can be in energy or in watts (or at times energy 

or watts squared)[3].  

B. Uniform Linear Array (ULA) 

Consider the array of M identical sensors equally spaced in 

a line, illustrated in Fig .3. This kind of arrangement of the 

array is universally referred to as a ULA. Tentatively defines d 

to be the distance between two adjacent consecutive sensors, 

and let φ denotes the DOA of the signal enlightening the 

array, as measured (counter clockwise) with regard to the 

normal to the line of sensors. 

Then, in the consideration of planar wave hypotheses and 

the assumption that the first sensor in the array is selected as 

the reference point, we can discover the delay at sensor m, 

where m = 1, 2, … M.  Thereby M can be defined by:  

d sin φ
τ (m 1)

c
m
                                                (8) 

Where c is the propagation velocity, and it is in the case 

electromagnetic wave is indicated by the speed of light. 

Subsequently the phase difference can be computed as:  

Linear Array it is assumed that the look direction waveform 

is uncorrelated with the vector of non-look direction noise, 

thus the following consideration must take into account which 

can be expressed as 

 
m

2π
Δφ m 1 d sinφ (m 1)βdsinφ

λ
                     (9) 

Where λ is the wavelength and β is the wave number as given 

by
2




 , and d should be smaller than half of the signal 

wavelength. 

 
Fig. 3. Uniform Linear Array Structure 

 

Furthermore, we next introduce the so-called array transfer 
vector, direction vector, and steering vector as: 

   j(βdsin φ) j(M 1)(βdsin φ) T
φ [1 e e ]


                        (10) 

 Noteworthy, the steering vector controls the responses of 
all elements of the array to a source with a single frequency 
component of unit power. Since the array response is dissimilar 
in different directions, a steering vector is related with each 
directional source. The array geometry describes the 
uniqueness of this association. Thus, for an array of identical 
elements, each component of this vector has unit magnitude.     
In addition, the phase of its mth component is equal to the 
phase difference between signals induced on the mth element 
and the reference element due to the source associated with the 
steering vector. The reference element usually is set to have 
zero phases [5]. 

 The restriction of φ as well as to lie in the interval 

[ 90 , 90 ]   is a limitation of ULAs. Moreover, two or more 

sources at locations symmetric with respect to the array line 

yield identical sets of delays { τ
m

} and henceforth cannot be 

distinguished from one to another. Therefore, in practice these 
ambiguities of ULAs are removed by using sensors that only 

pass signals for whose DOAs are limited between [ 90 , 90 ]   

. 

III. SUBSPACE DOA ESTIMATION TECHNIQUES  

 This section provides an overview of the DOA methods 
used in our paper. Evidently, the DOA estimation is an 
essential process to decide the direction of incoming signals 
and thus to direct the beam of the antenna array towards the 
estimated direction. Over the years there are enormous 
varieties of DOA algorithms that have been proposed such as 
conventional spectral-based, subspace spectral-based and 
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statistical method. The subspace based is considered here and 
the rest of the methods are not addressed but briefly 
highlighted.  The conventional methods, which estimate DOA 
through beamforming techniques, are straightforward and 
require low computation complexity. Nevertheless, these 
methods have low resolution that leads to the introduction of 
subspace-based algorithms. Accordingly, high resolution 
subspace methods, such as MUSIC and ESPRIT, promise 
preferable accuracy and resolution performance over the 
conventional methods. However, the performances of these 
methods greatly depend on the source number estimation and 
uncorrelated signal environment as well as high computational 
complexity. In addition, in real applications, when the number 
of sources is wrongly estimated and the correlated signals 
existed due to multipath fading, the performance of subspace 
based methods will deteriorate significantly. Thus, to avoid the 
problem of source estimation of high computational 
complexity, Capon algorithm can be applied in DOA 
estimation, but with the cost of lower resolution compared with 
subspace-based method. 
  Nearly, most DOA algorithms, especially the high 
resolution subspace-method, work skillfully well with the 
omnidirectional antenna array, but cannot be used directly with 
a directional antenna array due to three obvious reasons. 

 Firstly, the radiation patterns of directional elements are 
narrow compared with omnidirectional elements. 

 Secondly, the mutual couplings between the directional 
elements are totally considerable and cannot be ignored. 

 Thirdly, directional elements have diversified gain on 
particular signal directions due to the narrow shape of 
the radiation pattern. 

 Consequently, all of these characters lead to the difficulty 
of utilizing the existing DOA algorithms in directional antenna 
arrays. Thus, as a result, the directional antenna arrays request 
a DOA algorithm that would fit the characters of directional 
elements.  
 Geometrically, the received signal vectors from the 
received signal vector space whose vector dimension is equal 
to the number of array elements M. Therefore, the received 
signal space can be separated into two parts: 
 The signal subspace and the noise subspace. The signal 

subspace is the subspace spanned by the columns of  A   , 

and the subspace orthogonal to the signal subspace is known as 
the noise subspace. Profitably, the subspace algorithms develop 
this orthogonality to determine the signals’ DOAs. 
 Generally, there is much helpful information to be observed 
in the eigen analysis of the array correlation matrix [16]. In the 
light of M-array elements with D-narrowband signal sources 
and uncorrelated noise, we can model some assumptions about 

the characteristics of the correlation matrix. First  
xx

R is an 

M×M hermitian matrix. A hermitian matrix is equal to its 
complex conjugate transpose. Basically, the antenna array 

correlation matrix has M eigenvalues
1 2 M

(g ,g , ,g )  along 

with M associated eigenvectors
1 2 M

E [e e . . . e ] . 

Thus, if the eigenvalues are sorted from smallest to largest, we 
can separate the matrix E into two subspaces such 

that
N S

E E E      . The first subspace 
NE   is called the 

noise subspace and it is composed of M−D eigenvectors 
associated with the noise. On the other hand, the second 

subspace 
SE is called the signal subspace and it is composed 

of D eigenvectors associated with the arriving signals. We 
should point out that, the noise subspace is an M× (M−D) 
matrix whereas the signal subspace is an M×D matrix. Next we 
will investigate the methods that chosen in this paper.  

A. The MUSIC Algorithm Array  

 MUSIC is an abbreviation which stands for Multiple Signal 
Classification. Mainly, this approach is a popular high 
resolution eigen structure method which was first posed by 
Schmidt [9]. MUSIC assures to give unbiased estimates of the 
number of signals, the angles of arrival, and the strengths of the 
waveforms. MUSIC formulates the assumption that the noise 
in each channel is uncorrelated, therefore making the noise 
correlation matrix diagonal. In addition, the incident signals 
may be somewhat correlated, creating a non-diagonal signal 
correlation matrix. Nevertheless, under high signal correlation 
the conventional MUSIC algorithm breaks down and other 
methods must be realized to rectify this weakness. 

 One has to know in advance the number of incoming 
signals or he should search the eigenvalues to decide the 
number of arriving signals. If the number of signals is D, the 
number of signal eigenvalues and eigenvectors is D, and the 
number of noise eigenvalues and eigenvectors is M−D (M is 
the number of antenna array elements). Meanwhile, because 
MUSIC takes advantage of the noise eigenvector subspace, it is 
sometimes referred to as a subspace method. As for DOA 
estimation, we compute the array correlation matrix assuming 
uncorrelated noise with equal variances.  

H 2

xx ss n
R AR A σ I 

                                               (11)
 

 Next we find the eigenvalues and eigenvectors for Rxx . 
Then we produce D eigenvectors associated with the signals 
and M−D eigenvectors associated with the noise. Also, we 
choose the eigenvectors associated with the smallest 
eigenvalues. In a situation of uncorrelated signals, the smallest 
eigenvalues are equal to the variance of the noise. Thus, we can 
then construct the M× (M−D) dimensional subspace spanned 
by the noise eigenvectors.  

 As pointed out earlier the noise subspace eigenvectors are 
orthogonal to the array steering vectors at the angles of arrival. 
Based on the orthogonality condition, therefore one can show 

that the Euclidean distance 
H H

N N
d a(φ) E E a(φ) 0   for 

each/every arrival angle. By placing this distant expression will 
guarantee creates sharp peaks at the angles of arrival. The 
MUSIC pseudo spectrum is now given as: 

 
   

MU H H

N N

1
P φ

a φ E E a φ
                                   (12) 

 The significant problem of MUSIC is that the accuracy is 
limited by the discretization at which the MUSIC function 
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( )MUP  is evaluated. More importantly, it requires either 

human interaction to decide on the largest M peaks or a 
comprehensive search algorithm to determine these peaks. This 
is an extremely computationally intensive and also processing 
array calibration is critical. Therefore, MUSIC by itself is not 
very practical; we require a methodology that results directly in 
numeric values for the estimated directions. This is where the 
Root MUSIC comes in, which  provide better performance 
than music especially in low SNR situations, and it only 
worries about the phase of the roots.  

B. Root-MUSIC AOA Estimation  

 Root-MUSIC implies that the MUSIC algorithm is reduced 
to finding the roots of a polynomial as opposed to only plotting 
the pseudospectrum or searching for peaks in the 
pseudospectrum. 

 MUSIC algorithm is simplified for the case where the 
antenna is a ULA. Recalling that the MUSIC pseudospectrum 
is given by (12), thus one can facilitate the denominator 
expression by defining the matrix C=EN which is hermitian. 
Accordingly, this leads to the root-MUSIC expression which 
can be recast as  

 
   

RMU H

1
P φ

a φ C a φ
                                      (12)       

 We consider a scenario with the ULA, the mth element of 

the array steering vector is given by   jβd(m 1)sin φ

m
a φ e


   

where  1,  2   m M  . The result of the denominator 

argument can be written as 

   
M

H jβd(m 1)sin φ jβd(n 1) sin φ

mn

m 1 n 1

M 1
jβdl sin φ

l

l M 1

a φ Ca φ e C e

C e

N
  

 



 





 



         (13)   

 
Where C1 is the total sum of the diagonal elements of C along 

the lth diagonal such that  
l mn

m n l

c c
 

   .It should be noted that 

the matrix C has off-diagonal sums such that 
0 l

c | c |   for l ≠ 

0. Thus the sum of off-diagonal elements is permanently lower 
than the sum of the main diagonal elements. In addition,   For a 

6 × 6 matrix we have 11  diagonals ranging from diagonal 

numbers l 5, 4, ,0, ,4,5      .  The lower left diagonal is 

represented by l = −5 whereas the upper right diagonal is 
represented  by l = 5. The C1 coefficients are calculated by 

5 61 4 51 62 3 41 52 63
c c ,c c c ,c c c c
  
        ,  and so on. 

 We can simplify the aforementioned equations to be in the 
form of a polynomial whose coefficients are C1, thus yielding 

                     

 
M 1

l

l

l M 1

D Z c z


 

 
                                         

(14)  

Where 
jβdsinφZ e  

It is worth remarking that, the roots of D (z) that lie closest 

to the unit circle correspond to the poles of the MUSIC 

pseudospectrum [8]. Thus, this technique is called the root-

MUSIC. The polynomial is of order 2(M−1) and therefore has 

roots of 
1 2 2(m 1)

z ,z ,. . ., , z


. Each root can be complex and 

using polar notation can be written as  

  ijarg(z )

i iz | z | e      1,2,...,2( 1)i M                   (15) 

Where arg (zi) represents the phase angle of zi.  

     Exact zeros in D(z) exist when the root magnitudes |zi| = 1.  

Then the calculation of the AOA achieved by comparing 
ij arg(z )

e  to 
j βdsinφ

e


and finally the AOA can be given by 

1 1
( ) ( ( ))

i
i sin arg z




                                               (16) 

C.  The ESPRIT AOA Estimation  

 

The target of the ESPRIT technique is to develop the 

rotational invariance in the signal subspace, which is formed 

by two arrays with a translational invariance structure. 

ESPRIT essentially assumes narrowband signals so that one 

knows the translational phase relationships between the 

multiple arrays to be used. As with MUSIC and ESPRIT 

assume that there are D < M narrow-band sources centered at 

the center frequency f0. In general, these signal sources are 

assumed to be of a sufficient range, so that the incident 

propagating field is approximately planar [9]. The sources can 

be either random or deterministic and the noise is assumed to 

be random with zero mean. 

ESPRIT supposes multiple identical arrays called doublets. 

These can be divided the arrays or can be composed of sub-

arrays of one larger array. It is important to remark that these 

arrays are displaced translational but not rotationally. An 

example is shown in Fig. 4 where a four element linear array 

is composed of two identical three-element sub-arrays or two 

doubles. These two sub-arrays are translational displaced by 

the distance d. Let us depict these arrays as Array 1 and Array 

2.  

 
Fig. 4. Doublet Composed of Two Identical Displaced Arrays 

 The signals induced in each of the arrays are given by  

1 1 1 1 2 1 D 1

s1(k)

s2(k)
x (k) [a (φ )a (φ ) a (φ )]. n (k)

:

sD(k)

  

 
 
 
 
 
   

                          1 1
A . s(k) n (k)                                     (17)  
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 And
2 2 2

1 2

        x (k) A . s(k) n (k)

  A .Φ.(k) n (k)

 

 
 

                             (18)  

Where 1 2   
{ , ,..... }.., Dj dsin j dsin j dsin

diag e e e
    

  which is 

a DxD diagonal unitary matrix with phase shift between the 

doublets for each DOA. Whereas Ai expresses the 

Vandermonde matrix of steering vectors for sub-arrays i=1, 2.    

The complete received signal, in view of the contributions of 

both sub-arrays, is given as: 

1 1 1

2 1 2

x (k) ( )
x(k) .(k)

x (k) .Φ ( )

A n k

A n k
  
     
     
                   

(19) 

Then, We can now calculate the correlation matrix for either 

the complete array or for the two sub-arrays, to this end, 

correlation matrices can be decomposed into two subspaces 

E1and E2 .Then, the subspaces of eigenvectors are related by a 

unique non-singular transformation matrix Ψ such that 

1 2
 E Ψ E and so must also exist a unique non-singular 

transformation matrix T such that
1

E AT and 

analogously
2

E AΦT . 

Finally, after some rearrangements in the previous 

consecrations and assuming that A is of full-rank, we can 

derive the relationship bellow 
1

TΨT Φ

                                          (20)                         

Ψ is a rotation operator that maps the signal subspace E1into 

the signal subspace E2 .Thus; it is profitably to leave the 

problem of estimating the subspace rotation operator Ψ and 

consequently finding the eigenvalues of Ψ 

     If we are constrained to a finite number of measurements 

and we also assume that the subspaces E1 and E2 are equally 

noisy, we can estimate the rotation operator Ψ using the total 

least squares (TLS) criterion. This procedure is summarized as 

follows: 

1) Estimate the array correlation matrices from the data 

samples.  

2) Knowing the array correlation matrices for both 

subarrays, one can estimate the total number of sources by the 

number of large eigenvalues in  either R11and R22 .  

3) Calculate the signal subspaces R11and R22 based upon 

the signal eigenvectors of  the For R11and R22 ULA, one can 

instead construct the signal subspaces from the entire array 

signal subspace Es. Es is an M × D matrix composed of the 

signal eigenvectors.  E1 can be constructed by selecting the 

first M/2 + 1 rows ((M + 1)/2 + 1 for odd arrays) of R11and 

R22 .E2  can be constructed by selecting the last M/2+1 rows 

((M+ 1)/2 + 1 for odd arrays) of Es. 

4) Next structure a 2D × 2D matrix using the signal 

subspaces such that.  

                 

H

H1

1 2 c cH

2

E
C [E E ] E ΛE

E

 
  
 

                   (21) 

where the matrix EC  is from the eigenvalue decomposition 

(EVD) of C such  that g1 ≥ g2 ≥ …  g2D    and Λ = diag {g1 , g2 , 

,…  , g2D }  which splitting EC into four D × D submatrices 

such that: 

11 12

c

21 22

E E
E

E E

 
 
                                                 (21) 

5) Estimate the rotation operator Ψ by and then Calculate 

the eigenvalues of Ψ . 

6) Lastly estimate the AOA given that ijargarg(g )

i i
g | g | e

 
by  

                    
 1 i

arg g
φ i sin ( )

βd


                                   (22) 

ESPRIT is more robust with respect to array imperfections 

and has better resolution. Moreover, ESPRIT reduces the 

computations and storage costs, and also no calibration 

needed. Furthermore, ESPRIT deals with many conditions that 

are not easy to achieve. On the negative side, it needs 

doublets, and must calculate the total least-squares (TLS) or 

least-squares (LS). 

D. Spatial Smoothing  

There is a great effort has been spent in developing high 

resolution techniques for estimating the DOA of multiple 

signals by multiple sensors. These methods  in common, use  

specific eigenstructure  properties of the  sensor array  output 

covariance matrix and are known to yield  high resolution 

even  when the  signal  sources  are partially correlated. 

However, when some of the signals are completely correlated 

(coherent), as happens, for example, in multipath propagation, 

these techniques encounter serious difficult ties. Many 

research works have been proposed take care of this situation, 

particularly ,their solution is based  on a preprocessing scheme 

that  partitions  the  total array  of sensors into sub-arrays and 

then  produces the average of the sub-array output covariance  

matrices. By this way it is possible to estimate all directions of 

arrival irrespective of their degree of correlation [12]. 

Spatial smoothing is a solution to the coherent case 

problem for the ULA case. Suppose a ULA with M sensors 

are divided into overlapping sub-arrays with L sensors. 

Sensors {1… L} form the first sub-array sensors, sensors {2… 

L+1} form the second sub-array as can be seen in Fig. 5.  

 
Fig. 5. Spatial Smoothing Scheme 

      Accordingly, the spatial smoothing covariance matrix is 

defined by calculating the Average of the individual sub-array 

covariance matrices. 
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b
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1ˆ
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

                                     (22) 

 Where b = M − L +1   is the number of sub-arrays. 

      Clearly, the spatial smoothing method reduces the 

effective aperture (capture area), which is the frontal from 

which a receiving antenna extracts energy from passing 

electromagnetic waves. Furthermore, there is an improved 

spatial smoothing scheme-called the forward/backward spatial 

smoothing scheme [13], which reduces the number of 

elements needed for estimating the DOA.  The enhancements 

are carried out by instead of using only the forward sub-array, 

the scheme makes use of the complex Conjugated backward 

sub-arrays of the original array to achieve better performance.   

IV. PERFORMANCE ANALYSIS 

The performance analysis is conducted by simulations. To 

this end, MUSIC, ROOTMUSIC and ESPRIT techniques for 

DOA estimations are simulated using both coherent and 

uncorrelated signals.  

At first, in the case the uncorrelated signal, we consider a 

system with 10 typical elements in the ULA (M=10), with 

sensors separated by a half-wavelength d=0.5λ and 

SNR=10dB, with noise variance = 0.The number of samples 

to be generated (snapshots) taken to be N =300. Lastly, we 

assume there is two received uncorrelated, power-equal 

signals at the angle = [20˚ 40˚].  

The response of MUSIC is shown in Fig. 6, whereas Table 

(1) shows the estimated angle by Root MUSIC and ESPRIT. 

Table (1) also shows the comparisons of the performance 

efficiency based Elapsed time. 
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Fig. 6. The response of MUSIC 

TABLE I.  THE RESPONSE OF ROOT MUSIC AND ESPRIT 

Table Column Head 

Characteristics Root MUSIC ESPRI 

Angles estimated in degree 
19.9941 

39.9713 

19.9989 

39.9918 

Elapsed time in seconds 0.014534 0.005430 

 

 

     From Fig. 6, we can see clearly that MUSIC is sharpest in 

the peak and the bandwidth is very small, that indicates 

MUSIC has better resolution and accuracy. 

From the table I above, it is clear that the ESPRIT 

algorithm slightly performs Root MUSIC algorithm in the 

AOA but with remarkable enhancements in reducing the 

running time. 

 Secondly, we will compare the MUSIC method in light of 

different viewpoints as indicated earlier. The comparison is 

carried out by changing the number of antenna array elements, 

SNR and the snapshots with the same assumption in the 

simulation above. Fig. 7 highlights the performance with 

different numbers of Elements while Fig. 8 shows the 

performance with different number of snapshots and Fig. 9 

points out the performance when different SNR is conducted. 
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number of elements =6

number of elements =10

number of elements =14

 
Fig. 7. MUSIC with different number of Elements 
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number of snapshoots =10

number of snapshoots =40

number of snapshoots =300

 
Fig. 8. MUSIC with different number of snapshots 
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SNR=1

SNR=10
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Fig. 9. MUSIC with different SNR 

For Fig. 7, the SNR=10, the number of noise variance = 

0.1 and snapshots k=300. The results indicate that, as the array 

size increases from 6 to 14, peaks in the spectrum become 
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sharper. Henceforth, resolution capability increases and 

MUSIC become more robust. 

In Fig. 8, the snapshots increase from 10 to 300.Therefore, 

resolution capability increases, and the two signals can be 

clearly identified. Similarly, in Fig. 9 as the SNR decreases 

from 20 to 1, peaks in spectrum start to disappear and other 

peaks start to rise and hence resolution capability for closely 

spaced signal decreases. 

From the above comparisons we can observe that an 

unavoidable relationship between computational complexity 

and higher performance. Furthermore, the results show that 

the MUSIC algorithm depends on antenna elements more than 

the snapshots and SNR because there is no remarkable 

enhancement with increasing the snapshots and the SNR as 

comparable to the antenna elements. Moreover, all the 

algorithms in low SNR, a small number of snapshots and a 

small number of antenna elements may lead to inaccurate or 

wrong estimates of DOAs. However, some schemes perform 

better than others in making this tradeoff. 

Thirdly, we then compare the root mean square errors 

(RMSE) for Root MUSIC and ESPRIT in different number of 

antenna array elements. Fig. 10 shows the comparison. 
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Fig. 10. Root MUSIC and ESPRIT with different number of elements 

From Fig. 10, it is obvious to see that the rate of change in 

the errors for Root MUSIC and ESPRIT approximately 

constant. Fig. 10 also verifies that a poorer estimate generally 

results when using a small number of elements. 

Finally, we will demonstrate the effectiveness and the 

advantages of the spatial smoothing. Simulation results are 

presented to illustrate the performance of the spatial 

smoothing scheme to solve the coherent signal situations. 

The array of 10 elements is divided into 6 sub-arrays, each 

with a length of 5 elements, and the others parameters kept as 

above. Fig. 11 shows that the coherent signals appear like one 

signal when received.  
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Fig. 11. The coherent signals 

 From the Fig. 11 above, it is confirmed that the coherent 

signals give the impression like one signal, but actually it is 

two signals with the same frequency and same initial phase. 

Fig. 12 plots the MUCIC methods with the spatial 

smoothing technique. Therefore, by combining MUCIC with 

spatial smoothing the dilemma of coherent signals DAO 

estimation can be easily solved. Table II shows the Root 

MUSIC and ESPRIT spatial smoothing response. 

Accordingly, we can indicate that both the methods are 

accurate and they approximately give a same DOA estimation 

in the coherent signal environments. 
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Fig. 12. MUCIC with spatial smoothing 

TABLE II.  ROOT MUSIC AND ESPRIT SPATIAL SMOOTHING 

Table Column Head 

Characteristics Root MUSIC ESPRI 

Angles estimated in degree 
19.9993 

39.9987 

19.9988 

39.9964 

Elapsed time in seconds 0.012345 0.004603 

V. CONCLUSION   

This paper considers a comparison between DOA 

estimation subspace methods in both incoherent and coherent 

signals. Nowadays, MUSIC, Root MUSIC and ESPRIT have 

developed rapidly and are widely applied for DOA estimation 

and many others useful applications. Therefore, these methods 

require further consideration and attention whilst considering 

reliability. Moreover, the improvement of these algorithms 

that will be of practical use depends both on the use of 

accurate designs and the use of designs that are sufficiently 

simple to permit tractable mathematical analysis. 
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