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Abstract—This paper considers the problem of estimating the
direction of arrival (DOA) for the both incoherent and coherent
signals from narrowband sources, located in the far field in the
case of uniform linear array sensors. Three different methods are
analyzed. Specifically, these methods are Music, Root-Music and
ESPRIT. The pros and cons of these methods are identified and
compared in light of different viewpoints. The performance of
the three methods is evaluated, analytically, when possible, and
by Matlab simulation. This paper can be a roadmap for
beginners in understanding the basic concepts of DOA estimation
issues, properties and performance.
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. INTRODUCTION

Research in the array processing is an area of study devoted
to processing the signals received from an antenna array and
extracting information of interest. It has played an important
role in widespread applications like radar, sonar, and wireless
communications [1]. DOA estimation of the signals arriving
from a particular direction nowadays a quite well established
theory and many interesting papers, on this topic, are available
in open literature.

During the last decades, many adaptive array processing
algorithms have been reported in the literature. Mainly these
algorithms, in a general view, exhibit a trade-off between
performance and required computational complexity. High
resolution DOA estimation is important in many sensor
systems. High-resolution frequency estimation is important in
different applications as the design and control of robots.
Evidently, in such problems, the functional form of the
underlying signals can often be assumed to be known e.g.,
(narrow-band plane waves). The quantities to be estimated are
parameters (e.g., frequencies and DOA's of plane waves,) upon
which the sensor outputs depend, and these parameters are
hence assumed to be stationary [2]. Basically, there have been
several approaches to such problems, including the so-called
maximum likelihood (ML) method of Capon [3] and Burg's
(maximum entropy (ME) method [4].

Even though, these methods are often effective in used and
widely employed. Nerveless, these schemes are based on
design criteria and assumptions not easily achievable.
Therefore, due to this fact, these methods are unpractical and
need to be improved. Pisarenko [6] was the first one who tries
to exploit the structure of the data model. Schmidt [9] and
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Bienvenu were the first to perfectly employ the measurement
model in the case of sensor arrays of arbitrary form.
Alternatively, Schmidt in particular finished this by first
deriving a complete geometric solution without the noise, then
intelligently expanding the geometric concepts to fulfill
acceptable approximate solution in the presence of noise. The
resulting algorithm was called MUSIC (Multiple Slgnal
Classification) and has been widely considered, among the
variety of existing high-resolution algorithms. MUSIC was the
most favorable and a leading candidate for further study and
actual hardware implementation. However, although the
performance advantages of MUSIC are essential, they are
accomplished at a significant cost in computation (searching
over parameter space) and storage (of array calibration data).
The ESPRIT (Estimation of Signal Parameters via Rotational
Invariance) algorithm dramatically reduces these computation
and storage costs [4].

This paper focuses on how to estimate the DOA of the
incoming signal based on aforementioned methods, based on
uniform linear array sensors for both coherent and non
coherent signals with different environments (numbers of array
elements, SNR, number of snapshots). A model for receiving
signals is developed for this purpose. Later, the model is
subjected to computer simulation to investigate the results and
to show the performance.

The rest of the paper is organized as follows: section Il
reviews the theoretical basics, and the methodology used for
this study is outlined in section Ill. Section IV reports the
simulations and Results and lastly in section V focuses on the
conclusion and further research.

Il.  THEORETICAL BASICS

In this section, we consider the theoretical basics of
locating n radiating sources by using an array of m passive
sensors, as shown in Fig. 1. Generally, the emitted energy
from the sources can be electromagnetic wave and the
receiving sensors can be any transducers that convert the
received energy to electrical signals (antennas).

This problem basically depends on determining how the
"energy" is scattered over space with the source positions
representing point sin space with concentrations of energy.
Thus, hence, it can be named a spatial spectral estimation
problem [7]. Meanwhile, this name is also motivated by the
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fact that there are close ties between the source-location
problem and the problem of temporal spectral estimation.
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Fig. 1. The set-up of the source-location problem

The advancement of the array model relies on a number of
simplifying assumptions. Consequently, some of these
assumptions, which have a more general character, are listed
below.

e The sources are assumed to be located in the far field of
the array.

e Furthermore, we presume that both the sources and the
sensors in the array are in the same plane and that the
sources are point emitters.

e In addition, it is presumed that the propagation medium
is homogeneous (i.e., not dispersive), and therefore the
waves coming at the array can be supposed to be planar.
Under these instances, the only parameter that describes
the source positions is the so-called angle of arrival
(AOA), or DOA.

e Moreover, it is presumed that the number of sources n
is specified. The selection of n, when it is unknown, is a

problem of remarkable importance for many
applications, which is often referred as the detection
problem.

o Finally, it is assumed that the sensors in the array can be
modeled as linear (time-invariant) systems, and thus
both their transfer characteristics and their locations are
known. In other words, we allege that the array is
assumed to be calibrated [2].

A. Received Signal Model

Predominately, many of the DOA algorithms rely on the
array correlation matrix. Fig. 2 shows D signals arriving from
D directions. Clearly, they are received by an array of M
elements with M potential weights.

Fig. 2. The set-up of the source-location problem
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M-element Array with D Arriving Signals
Each received signal X _ (k) includes additive zero mean
Gaussian noise. It should be remarked that, the time is

symbolized by the kth time sample. Thus, the array output y
can be specified in the following form:

y (k)=w"x(k) )
Where he received signal can be expressed as
s,(k)
s,(k
X (k) = [al((Pl)al((Pz) .. -al((PD)]- ( ) + Il(k)
S (K)
=A.s(k) +n(k)
&)

And the weights can show by w=[w,w,w,...w,,]" =

array weights. Furthermore, the rest of parameters can be
defined as follows:

s(k) = vector of incident complex monochromatic signals at
time k.

n(k) = noise vector at each array element m, zero mean,
variance o, ° .

a((pi ) = M-element array steering vector for the ¢; direction
of arrival.
A is an MxD matrix of steering vectors a((pi ) and is given by:

A=[a(e) a(o,) a,(¢p)] @)

Thus, each of the D-complex signals arrive at angles @

and is intercepted by the M antenna elements. It is initially
assumed that the arriving signals are monochromatic and the
number of arriving signals D < M. It is understood that the
arriving signals are time varying and thus our calculations are
based upon time snapshots of the incoming signal. Obviously,
if the transmitters are moving, the matrix of steering vectors is
varying with time and therefore the corresponding arrival
angles are also changing.

In order to simplify the notation, let us define the MxM

array correlation matrix R, as
R, = E[xx"]=E[(As+n)(s" A" +n")]
=AE[s.s"]JA" +E[n.n"]
H
=AR A" +R @)
Where R, represents the source correlation matrix and
R

n

=0’ M xM represents the noise correlation

matrix, whereas [ = MxM is the identity matrix.
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The array correlation matrix R and the source

correlation matrix R are found by the expected value of the

respective absolute values squared (ie, R =E[Xx.X"] ,

and R_ =E [S S ”] ). If we do not know the exact statistics

for the noise and signals, but we can assume that the process is
ergodic, then we can calculate the correlation by use of a time-
averaged correlation. Hereby, in that case the correlation

matrices are defined by
K

Z (K).x"(K) (5)
i ©)
R ziin(K).n”(K) @

When the signals are uncorrelated the R obviously has to
be a diagonal matrix because off-diagonal elements have no
correlation. When the signals are partly correlated, R_ is

non-singular. When the signals are coherent, R_ becomes

singular because the rows are linear combinations of each
other.

Generally, the goal of DOA estimation techniques is to
describe a function that provides a suggestion of the angles of
arrival based upon maxima vs. angle. In view of that, this
function is conventionally called the pseudospectrum P (¢)

and the units can be in energy or in watts (or at times energy
or watts squared)[3].

B. Uniform Linear Array (ULA)

Consider the array of M identical sensors equally spaced in
a line, illustrated in Fig .3. This kind of arrangement of the
array is universally referred to as a ULA. Tentatively defines d
to be the distance between two adjacent consecutive sensors,
and let @ denotes the DOA of the signal enlightening the
array, as measured (counter clockwise) with regard to the
normal to the line of sensors.

Then, in the consideration of planar wave hypotheses and
the assumption that the first sensor in the array is selected as
the reference point, we can discover the delay at sensor m,
wherem=1, 2, ... M. Thereby M can be defined by:

T, =(m —l)ds'”“’ ®)

Where ¢ is the propagatlon velocity, and it is in the case
electromagnetic wave is indicated by the speed of light.
Subsequently the phase difference can be computed as:

Linear Array it is assumed that the look direction waveform
is uncorrelated with the vector of non-look direction noise,
thus the following consideration must take into account which
can be expressed as
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©)

Where A is the wavelength and P is the wave number as given

2n .
Ap = (m - I)Td sing = (m — 1)Bdsing

2
by 5 = 77[ and d should be smaller than half of the signal

wavelength.

source

dsin g

sensor

Fig. 3. Uniform Linear Array Structure

Furthermore, we next introduce the so-called array transfer
vector, direction vector, and steering vector as:

(p)=01

eJ(BdSiﬂ(P) ej(M—l)(Bdsin&D)]T

(10)

Noteworthy, the steering vector controls the responses of
all elements of the array to a source with a single frequency
component of unit power. Since the array response is dissimilar
in different directions, a steering vector is related with each
directional source. The array geometry describes the
uniqueness of this association. Thus, for an array of identical
elements, each component of this vector has unit magnitude.
In addition, the phase of its mth component is equal to the
phase difference between signals induced on the mth element
and the reference element due to the source associated with the
steering vector. The reference element usually is set to have
zero phases [5].

The restriction of ¢ as well as to lie in the interval
[-90°,+90°] is a limitation of ULAs. Moreover, two or more
sources at locations symmetric with respect to the array line
yield identical sets of delays {t_} and henceforth cannot be
distinguished from one to another. Therefore, in practice these
ambiguities of ULAs are removed by using sensors that only

pass signals for whose DOAs are limited between [-90",+90°]

I1l.  SuBsPACE DOA ESTIMATION TECHNIQUES

This section provides an overview of the DOA methods
used in our paper. Evidently, the DOA estimation is an
essential process to decide the direction of incoming signals
and thus to direct the beam of the antenna array towards the
estimated direction. Over the years there are enormous
varieties of DOA algorithms that have been proposed such as
conventional spectral-based, subspace spectral-based and
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statistical method. The subspace based is considered here and
the rest of the methods are not addressed but briefly
highlighted. The conventional methods, which estimate DOA
through beamforming techniques, are straightforward and
require low computation complexity. Nevertheless, these
methods have low resolution that leads to the introduction of
subspace-based algorithms. Accordingly, high resolution
subspace methods, such as MUSIC and ESPRIT, promise
preferable accuracy and resolution performance over the
conventional methods. However, the performances of these
methods greatly depend on the source number estimation and
uncorrelated signal environment as well as high computational
complexity. In addition, in real applications, when the number
of sources is wrongly estimated and the correlated signals
existed due to multipath fading, the performance of subspace
based methods will deteriorate significantly. Thus, to avoid the
problem of source estimation of high computational
complexity, Capon algorithm can be applied in DOA
estimation, but with the cost of lower resolution compared with
subspace-based method.

Nearly, most DOA algorithms, especially the high
resolution subspace-method, work skillfully well with the
omnidirectional antenna array, but cannot be used directly with
a directional antenna array due to three obvious reasons.

o Firstly, the radiation patterns of directional elements are

narrow compared with omnidirectional elements.

e Secondly, the mutual couplings between the directional
elements are totally considerable and cannot be ignored.

e Thirdly, directional elements have diversified gain on
particular signal directions due to the narrow shape of
the radiation pattern.

Consequently, all of these characters lead to the difficulty
of utilizing the existing DOA algorithms in directional antenna
arrays. Thus, as a result, the directional antenna arrays request
a DOA algorithm that would fit the characters of directional
elements.

Geometrically, the received signal vectors from the
received signal vector space whose vector dimension is equal
to the number of array elements M. Therefore, the received
signal space can be separated into two parts:

The signal subspace and the noise subspace. The signal
subspace is the subspace spanned by the columns of A ((p) ,
and the subspace orthogonal to the signal subspace is known as
the noise subspace. Profitably, the subspace algorithms develop
this orthogonality to determine the signals’ DOAs.

Generally, there is much helpful information to be observed
in the eigen analysis of the array correlation matrix [16]. In the
light of M-array elements with D-narrowband signal sources
and uncorrelated noise, we can model some assumptions about

the characteristics of the correlation matrix. First R, is an

MxM hermitian matrix. A hermitian matrix is equal to its
complex conjugate transpose. Basically, the antenna array

correlation matrix has M eigenvalues (9,,9,,...,d,,) along
with M associated eigenvectors E=[e, e, eul -

Thus, if the eigenvalues are sorted from smallest to largest, we
can separate the matrix E into two subspaces such
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thatE = [EN ES] . The first subspace E, s called the

noise subspace and it is composed of M—D eigenvectors
associated with the noise. On the other hand, the second

subspace Eg is called the signal subspace and it is composed

of D eigenvectors associated with the arriving signals. We
should point out that, the noise subspace is an Mx (M—-D)
matrix whereas the signal subspace is an MxD matrix. Next we
will investigate the methods that chosen in this paper.

A. The MUSIC Algorithm Array

MUSIC is an abbreviation which stands for Multiple Signal
Classification. Mainly, this approach is a popular high
resolution eigen structure method which was first posed by
Schmidt [9]. MUSIC assures to give unbiased estimates of the
number of signals, the angles of arrival, and the strengths of the
waveforms. MUSIC formulates the assumption that the noise
in each channel is uncorrelated, therefore making the noise
correlation matrix diagonal. In addition, the incident signals
may be somewhat correlated, creating a non-diagonal signal
correlation matrix. Nevertheless, under high signal correlation
the conventional MUSIC algorithm breaks down and other
methods must be realized to rectify this weakness.

One has to know in advance the number of incoming
signals or he should search the eigenvalues to decide the
number of arriving signals. If the number of signals is D, the
number of signal eigenvalues and eigenvectors is D, and the
number of noise eigenvalues and eigenvectors is M—D (M is
the number of antenna array elements). Meanwhile, because
MUSIC takes advantage of the noise eigenvector subspace, it is
sometimes referred to as a subspace method. As for DOA
estimation, we compute the array correlation matrix assuming
uncorrelated noise with equal variances.

H 2
R, =AR A" +5" I 1)

Next we find the eigenvalues and eigenvectors for Ry .
Then we produce D eigenvectors associated with the signals
and M-D eigenvectors associated with the noise. Also, we
choose the eigenvectors associated with the smallest
eigenvalues. In a situation of uncorrelated signals, the smallest
eigenvalues are equal to the variance of the noise. Thus, we can
then construct the Mx (M—D) dimensional subspace spanned
by the noise eigenvectors.

As pointed out earlier the noise subspace eigenvectors are
orthogonal to the array steering vectors at the angles of arrival.
Based on the orthogonality condition, therefore one can show

that the Euclidean distance d =a(¢p)"E E,"a(p)=0 for

each/every arrival angle. By placing this distant expression will
guarantee creates sharp peaks at the angles of arrival. The
MUSIC pseudo spectrum is now given as:

) 1
" (¢)E,E,"a(o)

The significant problem of MUSIC is that the accuracy is
limited by the discretization at which the MUSIC function

P, (o)

(12)
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Py (@) is evaluated. More importantly, it requires either

human interaction to decide on the largest M peaks or a
comprehensive search algorithm to determine these peaks. This
is an extremely computationally intensive and also processing
array calibration is critical. Therefore, MUSIC by itself is not
very practical; we require a methodology that results directly in
numeric values for the estimated directions. This is where the
Root MUSIC comes in, which provide better performance
than music especially in low SNR situations, and it only
worries about the phase of the roots.

B. Root-MUSIC AOA Estimation

Root-MUSIC implies that the MUSIC algorithm is reduced
to finding the roots of a polynomial as opposed to only plotting
the pseudospectrum or searching for peaks in the
pseudospectrum.

MUSIC algorithm is simplified for the case where the
antenna is a ULA. Recalling that the MUSIC pseudospectrum
is given by (12), thus one can facilitate the denominator
expression by defining the matrix C=Ey which is hermitian.
Accordingly, this leads to the root-MUSIC expression which
can be recast as

1

a" (¢) Ca(p)
We consider a scenario with the ULA, the mth element of

the array steering vector is given by a_ (@)= e™ ™"

where m= 1, 2... M . The result of the denominator
argument can be written as

M N
a" ((p)Ca((p) = Z ze*de(m—l)sin(PCmnej[Sd(n—l)singp

m=1 n=1

Z C elﬁdlsmw

—-M+1

Py (¢0) = (12)

(13)

Where C, is the total sum of the diagonal elements of C along

the Ith diagonal such that ¢, = ZCmn It should be noted that
m-n=I

the matrix C has off-diagonal sums such that ¢, >|c, | for | #

0. Thus the sum of off-diagonal elements is permanently lower
than the sum of the main diagonal elements. In addition, Fora
6 X 6 matrix we have 11 diagonals ranging from diagonal

numbers| =-5,-4,...,0,...,4,5 . The lower left diagonal is
represented by 1 = —5 whereas the upper right diagonal is
represented by | = 5. The C; coefficients are calculated by
c,=c¢,C,=C,+C,,C,=C,+C,, +C, , and soon.

We can simplify the aforementioned equations to be in the
form of a polynomial whose coefficients are C1, thus yielding

Zcz

—M+1

D(2)= (14)

Where Z = g~ IPdsine
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It is worth remarking that, the roots of D (z) that lie closest
to the unit circle correspond to the poles of the MUSIC
pseudospectrum [8]. Thus, this technique is called the root-
MUSIC. The polynomial is of order 2(M—1) and therefore has
roots of z,,z,,...,,Z,,_,, - Each root can be complex and
using polar notation can be written as

z, =z, |e™9) i =12,.,2(M -1)
Where arg (z;) represents the phase angle of z;.

Exact zeros in D(z) exist when the root magnitudes |zi| =

Then the calculation of the AOA achieved by comparlng

eJarg(z ) e —J Bdsing
to and finally the AOA can be given by

(15)

ﬂ0=4m%%me» (16

C. The ESPRIT AOA Estimation

The target of the ESPRIT technique is to develop the
rotational invariance in the signal subspace, which is formed
by two arrays with a translational invariance structure.
ESPRIT essentially assumes narrowband signals so that one
knows the translational phase relationships between the
multiple arrays to be used. As with MUSIC and ESPRIT
assume that there are D < M narrow-band sources centered at
the center frequency f, In general, these signal sources are
assumed to be of a sufficient range, so that the incident
propagating field is approximately planar [9]. The sources can
be either random or deterministic and the noise is assumed to
be random with zero mean.

ESPRIT supposes multiple identical arrays called doublets.
These can be divided the arrays or can be composed of sub-
arrays of one larger array. It is important to remark that these
arrays are displaced translational but not rotationally. An
example is shown in Fig. 4 where a four element linear array
is composed of two identical three-element sub-arrays or two
doubles. These two sub-arrays are translational displaced by
the distance d. Let us depict these arrays as Array 1 and Array
2.

Array 1
v v
® L J ®
B d—-—-
? .
Array 2

Fig. 4. Doublet Composed of Two Identical Displaced Arrays

The signals induced in each of the arrays are given by
s1(k)

s2(K)

X,(K) =[a,(¢,)a,(9,)...a,(¢,)] +n,(k)

sD(k)

= A, s(k) +n,(K) 17
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x,(K) = A,. s(k) +n,(K)
= ALD.(K) +1n,(K)

Where @ =diag{e’/™" %, " % .....e ™" %} which is
a DxD diagonal unitary matrix with phase shift between the
doublets for each DOA. Whereas A; expresses the
Vandermonde matrix of steering vectors for sub-arrays i=1, 2.

The complete received signal, in view of the contributions of
both sub-arrays, is given as:

[0 [ A n, (k)
=] 9 o)

Then, We can now calculate the correlation matrix for either
the complete array or for the two sub-arrays, to this end,
correlation matrices can be decomposed into two subspaces
E;and E, .Then, the subspaces of eigenvectors are related by a
unique non-singular transformation matrix ¥ such that

E,¥=E, and so must also exist a unique non-singular

And (18)

(19)

transformation matrix T such that E, =AT and
analogously E, = A®T .
Finally, after some rearrangements in the previous

consecrations and assuming that A is of full-rank, we can
derive the relationship bellow

TYT ' =0 (20)
W is a rotation operator that maps the signal subspace Ejinto
the signal subspace E, .Thus; it is profitably to leave the
problem of estimating the subspace rotation operator ¥ and
consequently finding the eigenvalues of ¥

If we are constrained to a finite number of measurements
and we also assume that the subspaces E; and E, are equally
noisy, we can estimate the rotation operator W using the total
least squares (TLS) criterion. This procedure is summarized as
follows:

1) Estimate the array correlation matrices from the data
samples.

2) Knowing the array correlation matrices for both
subarrays, one can estimate the total number of sources by the
number of large eigenvalues in either Ry;and R, .

3) Calculate the signal subspaces Rj;and Ry, based upon
the signal eigenvectors of the For Ry;and R,, ULA, one can
instead construct the signal subspaces from the entire array
signal subspace Es ES is an M x D matrix composed of the
signal eigenvectors. E; can be constructed by selecting the
first M/2 + 1 rows ((M + 1)/2 + 1 for odd arrays) of Ry;and
R», .E, can be constructed by selecting the last M/2+1 rows
((M+ 1)/2 + 1 for odd arrays) of Es.

4) Next structure a 2D x 2D matrix using the signal
subspaces such that

E H
C= {El“ (21)
2

:|[E1E2] = ECAECH
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where the matrix Ec is from the eigenvalue decomposition
(EVD) of C such thatg;>g,>... gp and A =diag{g:, 9>,
, & } Which splitting Ec into four D x D submatrices
such that:
E

E — |:E11 12j|
i E21 E22 (21)

5) Estimate the rotation operator ¥ by and then Calculate

the eigenvalues of ¥ . _

6) Lastly estimate the AOA given that g, =| g, |e/****®’
by

o(i)= Sinfl(&(g‘))
pd

ESPRIT is more robust with respect to array imperfections
and has better resolution. Moreover, ESPRIT reduces the
computations and storage costs, and also no calibration
needed. Furthermore, ESPRIT deals with many conditions that
are not easy to achieve. On the negative side, it needs
doublets, and must calculate the total least-squares (TLS) or
least-squares (L.S).

(22)

D. Spatial Smoothing

There is a great effort has been spent in developing high
resolution techniques for estimating the DOA of multiple
signals by multiple sensors. These methods in common, use
specific eigenstructure properties of the sensor array output
covariance matrix and are known to yield high resolution
even when the signal sources are partially correlated.
However, when some of the signals are completely correlated
(coherent), as happens, for example, in multipath propagation,
these techniques encounter serious difficult ties. Many
research works have been proposed take care of this situation,
particularly ,their solution is based on a preprocessing scheme
that partitions the total array of sensors into sub-arrays and
then produces the average of the sub-array output covariance
matrices. By this way it is possible to estimate all directions of
arrival irrespective of their degree of correlation [12].

Spatial smoothing is a solution to the coherent case
problem for the ULA case. Suppose a ULA with M sensors
are divided into overlapping sub-arrays with L sensors.
Sensors {1... L} form the first sub-array sensors, sensors {2...
L+1} form the second sub-array as can be seen in Fig. 5.

TI 17 7

l ! Xy 4|

Fig. 5. Spatial Smoothing Scheme

Accordingly, the spatial smoothing covariance matrix is
defined by calculating the Average of the individual sub-array
covariance matrices.
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b
R = 1ZRK (22)
b K=1
Where b=M — L +1 is the number of sub-arrays.

Clearly, the spatial smoothing method reduces the
effective aperture (capture area), which is the frontal from
which a receiving antenna extracts energy from passing
electromagnetic waves. Furthermore, there is an improved
spatial smoothing scheme-called the forward/backward spatial
smoothing scheme [13], which reduces the number of
elements needed for estimating the DOA. The enhancements
are carried out by instead of using only the forward sub-array,
the scheme makes use of the complex Conjugated backward
sub-arrays of the original array to achieve better performance.

IV. PERFORMANCE ANALYSIS

The performance analysis is conducted by simulations. To
this end, MUSIC, ROOTMUSIC and ESPRIT techniques for
DOA estimations are simulated using both coherent and
uncorrelated signals.

At first, in the case the uncorrelated signal, we consider a
system with 10 typical elements in the ULA (M=10), with
sensors separated by a half-wavelength d=0.5A and
SNR=10dB, with noise variance = 0.The number of samples
to be generated (snapshots) taken to be N =300. Lastly, we
assume there is two received uncorrelated, power-equal
signals at the angle = [20° 40°].

The response of MUSIC is shown in Fig. 6, whereas Table
(1) shows the estimated angle by Root MUSIC and ESPRIT.
Table (1) also shows the comparisons of the performance
efficiency based Elapsed time.

MUSIC Spectrum
80

70

60

50

40

30

PS(dh)

20

10
o )) \\ /r \\
-10
IV
2—?00 -80 -60 -40 -20 o 20 40 60 80 100
Angle in degrees
Fig. 6. The response of MUSIC
TABLE I. THE RESPONSE OF ROOT MUSIC AND ESPRIT
Table Column Head
Characteristics Root MUSIC ESPRI
. . 19.9941 19.9989
Angles estimated in degree 39.9713 39.9918
Elapsed time in seconds 0.014534 0.005430

From Fig. 6, we can see clearly that MUSIC is sharpest in
the peak and the bandwidth is very small, that indicates
MUSIC has better resolution and accuracy.
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From the table | above, it is clear that the ESPRIT
algorithm slightly performs Root MUSIC algorithm in the
AOA but with remarkable enhancements in reducing the
running time.

Secondly, we will compare the MUSIC method in light of
different viewpoints as indicated earlier. The comparison is
carried out by changing the number of antenna array elements,
SNR and the snapshots with the same assumption in the
simulation above. Fig. 7 highlights the performance with
different numbers of Elements while Fig. 8 shows the
performance with different number of snapshots and Fig. 9
points out the performance when different SNR is conducted.

MUSIC Spectrum
60 £
number of elements =6 I

number of elements =10 |
1
number of elements =14 I

50

40

30

20

PS(db)

10

o

il

-10 /
-20 — T T T / — T —
-30
-100 -80 -60 -40 -20 o 20 40 60 80 100
Angle in degree
Fig. 7. MUSIC with different number of Elements

MUSIC spectrum
50

number of snapshoots =10
number of snapshoots =40
number of snapshoots =300

40

30

20 il

. |
[\
./

-20 o 20
incident angle in degree
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60

-80 -60 -40

-20
-100

40 80 100

Fig. 8. MUSIC with different number of snapshots

MUSIC Spectrum
50 r r
SNR=1
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SNR=20 ||
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: n

. Wi
IV
5o : o — "'/ 40

60 40 20 o 20
Angle in degrees

PS (db)

L

60

-20

-100 -80 80 100

Fig. 9. MUSIC with different SNR

For Fig. 7, the SNR=10, the number of noise variance =
0.1 and snapshots k=300. The results indicate that, as the array
size increases from 6 to 14, peaks in the spectrum become
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sharper. Henceforth, resolution capability increases and
MUSIC become more robust.

In Fig. 8, the snapshots increase from 10 to 300.Therefore,
resolution capability increases, and the two signals can be
clearly identified. Similarly, in Fig. 9 as the SNR decreases
from 20 to 1, peaks in spectrum start to disappear and other
peaks start to rise and hence resolution capability for closely
spaced signal decreases.

From the above comparisons we can observe that an
unavoidable relationship between computational complexity
and higher performance. Furthermore, the results show that
the MUSIC algorithm depends on antenna elements more than
the snapshots and SNR because there is no remarkable
enhancement with increasing the snapshots and the SNR as
comparable to the antenna elements. Moreover, all the
algorithms in low SNR, a small number of snapshots and a
small number of antenna elements may lead to inaccurate or
wrong estimates of DOAs. However, some schemes perform
better than others in making this tradeoff.

Thirdly, we then compare the root mean square errors
(RMSE) for Root MUSIC and ESPRIT in different number of
antenna array elements. Fig. 10 shows the comparison.

RMSE FOR Root MUSIC AND ESPRIT
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Fig. 10. Root MUSIC and ESPRIT with different number of elements

From Fig. 10, it is obvious to see that the rate of change in
the errors for Root MUSIC and ESPRIT approximately
constant. Fig. 10 also verifies that a poorer estimate generally
results when using a small number of elements.

Finally, we will demonstrate the effectiveness and the
advantages of the spatial smoothing. Simulation results are
presented to illustrate the performance of the spatial
smoothing scheme to solve the coherent signal situations.

The array of 10 elements is divided into 6 sub-arrays, each
with a length of 5 elements, and the others parameters kept as
above. Fig. 11 shows that the coherent signals appear like one
signal when received.
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Fig. 11. The coherent signals

From the Fig. 11 above, it is confirmed that the coherent
signals give the impression like one signal, but actually it is
two signals with the same frequency and same initial phase.

Fig. 12 plots the MUCIC methods with the spatial
smoothing technique. Therefore, by combining MUCIC with
spatial smoothing the dilemma of coherent signals DAO
estimation can be easily solved. Table Il shows the Root
MUSIC and ESPRIT spatial smoothing response.
Accordingly, we can indicate that both the methods are
accurate and they approximately give a same DOA estimation
in the coherent signal environments.
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Fig. 12. MUCIC with spatial smoothing

TABLE Il RooT MUSIC AND ESPRIT SPATIAL SMOOTHING
Table Column Head
Characteristics Root MUSIC ESPRI
. . 19.9993 19.9988
Angles estimated in degree 39.0987 39.9964
Elapsed time in seconds 0.012345 0.004603

V. CONCLUSION

This paper considers a comparison between DOA
estimation subspace methods in both incoherent and coherent
signals. Nowadays, MUSIC, Root MUSIC and ESPRIT have
developed rapidly and are widely applied for DOA estimation
and many others useful applications. Therefore, these methods
require further consideration and attention whilst considering
reliability. Moreover, the improvement of these algorithms
that will be of practical use depends both on the use of
accurate designs and the use of designs that are sufficiently
simple to permit tractable mathematical analysis.
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