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Abstract— Sensor networks are used for monitoring purposes in 

different environments. One of the biggest issues is to keep the 

network alive as long as possible. Another concern is to keep it 

safe from attacks. The limitations of sensor nodes make them 

particularly vulnerable to attacks from adversaries. The most 

damaging type of attack is Denial of Service (DoS) attack where 

parts of the network are overloaded with a flood of requests 

forcing them to deplete their power and die early. In this paper, 

we introduce a set of metrics by which intruders are identified 

among the other nodes. This approach is characterized by the 

fact that identification of intruders is based on the intrinsic 

behavior that is either harmful or not beneficial to the network. 

At the same time our approach saves the network power by 

taking advantage of network redundancy, and query minimum 

number of nodes without affecting the accuracy of the results. 

We tested different intruder detection metrics to see if we can 

accurately find intruders in the sensor network and how early to 

save the network from damage. Our results show the 

effectiveness of these metrics in detecting intruders with 100% 

accuracy and 0 error rate from some of them.                                 

Keywords—intrusion detection; wireless sensor network; 

metric; usefulness; usability; utility; power consumption 

convergence. 

I. INTRODUCTION 

A sensor network is a collection of low cost, small form 
factor, embedded devices called sensor nodes. Sensor network 
can provide access to information anytime, anywhere by 
collecting, processing, analyzing and disseminating data. 
Sensor nodes are great for deployment in hostile environments 
or over large geographical areas. This exposes them to 
attackers who capture and reprogram individual sensor nodes. 
Once in control of a few nodes inside the network, the 
adversary can extract private sensed information from sensor 
network readings [1]. 

Wireless sensor networks could be deployed in both civil 

and military applications such as volcanic eruption monitoring, 

target monitoring, security and remote surveillance [2]. Their 

deployment in remote and frequently hostile environments 

combined with the device constraints, makes them particularly 

vulnerable to Denial of Service (DoS) attacks from 

adversaries. Since no single node detains critical or private 

information, the most damaging type of attack is (DoS) attack 

where parts of the network are crashed or overloaded with a 

flood of requests forcing them to deplete their power and 

making them non-available for their primary function which is 

monitoring. They are especially vulnerable to these kinds of 

attacks because of their lack of a fixed infrastructure and their 

limited power, memory, and computation resources. 

These networks are often deployed unattended for long 

periods of time. Therefore, it is important to guard against 

malicious outside behaviours. Typically, the security 

protection of networks consists of a collection of 

complementary tools and methods. The first line of protection 

consists of firewalls, which are “fences” built around the 

system directing all communication towards a small number 

of guarded gates. If an intruder succeeds in crossing the fence, 

a firewall is no longer useful, thus there is the need for 

intruder detection. 

 Intrusion detection is the process of discovering, analysing, 

and reporting unauthorized access, or damaging network or 

computer activities. It discovers violations of confidentiality, 

integrity, and availability of information and resources [3].  

Existing approaches to intrusion detection know about 

patterns of past intruders. When dealing with malicious 

intrusions, the network is constantly at risk of new enemies 

that may use a different pattern from the ones in the catalogue.  

Approaches based on the cataloguing of patterns associated 

with intruders suffer from a fundamental flaw: they only know 

about patterns of past intruders. Moreover, they depend on the 

extrinsic attributes like node authority, identity etc., and this 

characterization may result in false positives and false 

negatives.  

False positive identification:  Innocent nodes that behave in 

a way similar to that of intruder nodes are flagged based on 

assumed intentions. 

 False negative identification: Harmful intruders behave in 

a smart way and go undetected causing harm to the network. 

Intrusion detection can be based on detecting any 

significant difference between intruder and legitimate nodes, 

such as their power consumption.  Intruder nodes in DoS 

attacks tend to consume power more than a regular node due 

to their constant interactions with other nodes. The other way 
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is based on their contribution to the purpose of the network 

which is in the case of monitoring applications, responding to 

the query.  In other words, intruders are nodes that consume a 

lot of energy that is not used for answering the query, rather in 

other unknown activates.  

In DoS attacks, an intruder attacks other nodes within its 

range of communication and floods it with a request which as 

a result causes a huge power lost for that node and then an 

early death. Since all nodes are static, the intruder will not 

mobile to find another target if his target was set to sleep, 

because the intruder has no knowledge of the status of the 

other nodes, which will make the intruder lose power 

consistently whereas the power of the nodes are saved. 

Our solution is based on the premise that intruders are 

nodes tend to be excessively busy doing nothing, they are not 

efficient nodes in the network and not contribute to the main 

function of the network, which is monitoring the network.  

We introduce several metrics to detect intruders and 

compare the results. Using the simulation, we identify these 

intruders that act suspiciously in the network and then we take 

actions to minimize their harm as early as possible by setting a 

random time to shut them off. 

  Many of the traditional approaches to intrusion detection 

consist of a two-step approach: In the first step, a profile is 

created to characterize intruder behaviour. In the second phase, 

while the network is operating, the observed behaviour is 

compared with what has been catalogued and flagged if it 

matches catalogued abnormal behaviour [4][5][6] or if it 

deviates from catalogued normal behaviour [7][8]. 

Overall, the literature in sensor network intrusion detection 

can be divided according to what they protect. The resources 

typically targeted and protected include: data packets that can 

be maliciously dropped or changed [6], communication paths 

that can be intercepted and broken [5], communication signals 

that can be interfered with [10], normal behaviour that can be 

diverted by intrusion nodes [8], and data routing paths [11].  

These approaches tend to be demanding in terms of storage 

and computation. The patterns that they catalogue tend to be 

generic and are not very effective in the very specialized, 

application specific context of sensor networks [4]. The issue 

of performance has been partially addressed by distributing 

the work among nodes and optimizing the codes required to 

identify intruders [12][17].  

As a result many of the existing approaches have a high 

level of false positives and false negatives. On the other hand, 

using a wider net and looking for all unusual and rare 

behaviour may catch more intruders but would also result in a 

large number of false alarms.  

The existing works on intrusion detection suffer from 
fundamental deficiencies:   

 They are confined to specific kind of attacks, like 
wormhole attacks, routing holes, or to particular operations, 
like routing, localization, etc. These methods either have been 
associated in the past with malicious intruders or are simply 
suspicious because they are rare or different. 

These approaches also tend to be demanding in terms of 
storage and computation, and the patterns that they catalog 
tend to be generic and not application specific [5]. 

Moreover, we noticed intrusion detection approaches for 
DoS attacks in monitoring applications consume a lot of 
energy for data transmission and processing. In monitoring 
applications, energy should be managed wisely to extend the 
lifetime of the network.  

So this brings up the need for an efficient intrusion 
detection that is low in false positive and false negative, and as 
efficient as expensive approaches in terms of catching the 
intruders as early as possible. We are looking also for less data 
transmitting and communications back and forth with the 
cluster head, and less data processing. 

Our approach is based on the following premises: 

Premise 1: In monitoring applications, single nodes hold 

no critical or private information. Malicious intruders will 

attack by depleting nodes of their power through purposeless 

activities. 

Premise 2: Intruder nodes attack by engaging in intensive 

and purposeless activity.  

The key then to identify intruder is to detect “intensive” and 

“purposeless” activity. In a nutshell, the intensity of activity of 

a node is measured in part through the node’s level of 

communication or power usage. The purposelessness of the 

activity of a node requires a bit more thought to define. Our 

challenge is then to identify activity and purposefulness 

metrics with the following characteristics: 

 Accuracy: the metrics should allow us to identify all the 
harmful nodes (intruders). 

 Fairness: the metrics should not label harmless 
(innocent) nodes as intruders. 

 Minimal damage: the metrics should allow us to 
identify intruders fast enough, before the intruders 
cause too much damage to the network.  

 Efficiency: the effort required (power used) to identify 
intruders should cause minimal overhead to the nodes.  

 Distribution: the detection of the intruders should not 
rest on a small set of nodes.   

  We propose a set of metrics to characterize, respectively, 

intensity, purposefulness, and intensive purposefulness, and 

propose the architecture for monitoring these metrics. 

In this research, we experiment information based intruder 

detection paradigm that does not rely on any extrinsic features 

of the net effect of that behaviour and on its compatibility 
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with the mission of the overall network. A node whose 

objectives are in conflict with those of the network is 

considered harmful to the network, irrespective of its 

intentions.  

This paper is organized as follows: Section 2 describes the 

method we used. Section 3 talks about intrusion detection 

metrics. Section 4 explains network immunization. Section 5 

has the simulation and results. Section 6 conclusion and future 

work.  

II. METHOD 

There is a general agreement in the research community 

that the efficient management of power is paramount to the 

success of sensor networks and to the realization of their full 

potential in practical application [14]. Therefore we used 

different strategies in our research to ensure efficient energy 

consumption methods to detect intruders, these strategies are 

combinations of:   

A. Selective Querying 

As explained in [15], the idea of this approach is to query 

the minimum number of nodes that is enough to tell us 

accurate answer about the query. The selective querying is 

based on the following premise: 

Given a query Q computing some aggregate function f, 

given a set S of sensor nodes, it is possible to find a relatively 

small – subset S0 of S such that f(S0) provides us with a good 

approximation of f(S). The ideal of implementation of this 

premise is to select the S0 that contains the right size of nodes 

and right contents of data. This subset should guarantee us 

two things, first, it should detect emerging event, and second, 

it should include nodes that have proven to be the most 

relevant in the recent past. 

We define S0 the subset of nodes from each cluster to be 

queried such that it includes the scrutiny set and the 

exploratory set -the scrutiny set makes 75% of S0- contains 

nodes that show high relevance in the recent past, normally it 

includes nodes concentrated around the emerging event so that 

we ensure high accuracy of the query. On the other hand, the 

exploratory set - makes 25% of S0 - is a randomly selected set 

of nodes that is to give an opportunity to other nodes to be 

queried where an event might take place. So it gives a wider 

picture of the whole network. The selection of nodes is done 

using the next strategy. 

B. Information Value Based Trans-information 

The idea of information value is to select a number of 

nodes to query in each iteration that shows high information 

value and terminating the other ones that show low 

information value. The information collected from one node is 

not useful by itself, instead the values of all the nodes 

aggregated together matters in monitoring applications.  

 We used the Usefulness Metric that will be explained later 

to identify the useful nodes. Then we sort them based on their 

usefulness and keep those of high usefulness values in our 

scrutiny set to query in the next iterations, and discard the 

nodes of low usefulness and replace them with randomly 

selected nodes to represent the exploratory set.  In other 

words, the querying nodes S0 consist of:  

 75% of the nodes with the highest Usefulness value, 
regardless of how many times a node was queried in the 
past, as long as it shows that it is an area where the 
phenomena take place then keep this node in the 
scrutiny set.  

 25% randomly selected nodes, get replaced every fixed 
number of iterations. Their purpose is to explore other 
areas in the network which might be overlooked, and 
not focus on the 75% set of nodes only.    

By sampling nodes in this way, we ensure high accuracy to 
our query when we only query 12% of all the nodes. Using the 
Usefulness metric alone does not guarantee that we save 
power. We need to add other metrics to capture power 
consumption use in all nodes.  

In monitoring applications, no single node hold a critical  or 

private information, so the most damaging type of attack is 

DoS, when the goal of the attacker is  to build a connection 

with the nodes and overload  them with requests  forcing them 

to deplete their power, hence die early. 

III. INTRUSION DETECTION METRICS  

Based on premise two, we divide our metrics into three 

categories: measures of intensity, measures of purposefulness 

and finally metrics that combine the two together so that it 

measures intensive purposefulness.  

A. Measures of Intensity  

We came up with an approach to identify suspicious nodes 

based on the intensive activity knowledge of the nodes. Here 

we discuss the different ways in which we measure the 

intensity of activity. We can include:  

1) Absolute Power Usage Outlier Based Detection 

Intruders are more active than any other nodes in the 

network; we assume that Intruders lose power significantly as 

due to their intensive interaction with their surrounding nodes. 

Whereas legitimate nodes that are being queried lose the same 

amount of power in one time interval to respond to that query. 

 So we present the Activity A(Ni, t, δ)  Metric that measures 

the difference of power for δ time period  that measures the 

difference of power during time interval of interest, defined 

as: 

A (Ni, t, δ) = R (Ni, t+ δ) –R (Ni, t)                               (1) 

The Activity of a node Ni at time interval starting from t and 

having duration δ is denoted as A (Ni, t, δ), and where R (Ni, t) 

is the residual power of node Ni at time t. So in one time 
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interval δ, the maximum power consumption for a queried 

node is (δ *Query Cost) for each node. 

We conclude that this measurement is used to identify 

intruders in our network setup, since they tend to be highly 

active during one time interval comparing to other nodes that 

lose power no more than (δ *Query Cost) if they are 

interrogated.   

The activity Metric cannot be used to identify intruders in 

other hierarchy like trees hierarchy, when the activity value 

decreases for the nodes as you go up the tree, assuming that a 

node can interrogate its children not its parents, yet it sends 

the result to its parents. So the activity decreases for nodes in 

a higher level of the tree. But for the sake of having a 

complete methodology that is compatible with other network 

setup we define another metric that is suitable for all 

assumptions.  

2) Relative Power Usage 

The metric of relative power usage measures the ratio of the 

power level of a node over the average power of its neighbors. 

The neighbors are defined as the nodes that are within the 

same communication range of a particular node. So a node can 

have neighbors that belong to other clusters as long as they are 

close to each other.  

Relative Power Usage = PowerNi/ Avg Power Neighbors   (2) 

where Power Ni is the amount of power consumed by Node 

Ni. As we see in Figure 3 that intruders have significant 

Relative Power Usage over the other nodes, the reason for this 

is that we assume that intruder never runs out of power, 

whereas any other node continue to lose power as a result to 

answering the query. The average power of neighbors 

decreases which results in increasing the relative power usage 

of intruders. 

We can use this method to detect intruders where we can 

access the power level of each node, where intruders have 

infinite power supply. 

3) Total Number of Messages Received 

This metric relies on the number of messages received by 

each node, we assume that the intruder send one “Hello 

message” to its surrounding nodes and wait for response from 

them. In each iteration, an intruder sends one message to all 

and receives a number of messages equal to the number of its 

neighbors. As a result the total number of messages received 

by the intruder is higher than any other node. Because the 

nodes do not communicate among each other, they only 

communicate with the cluster head. On the other hand the 

cluster head sends one query message to all nodes and 

receives response messages from all of its members.  

In Figure 4, we see that the cluster heads have the highest 

total number of messages received, since each head receives 

an approximation of N/C members, where N is the total 

number of nodes, and C is the number of clusters in the 

network, C = 4 in our setup.  

The intruders come next since they communicate only with 

their neighbors. The neighbors are less than N/4, which 

explains why they lie in the middle. Regular nodes are two 

types, either suspicious or infected by the intruder. These 

nodes receive two messages in each iteration. One message is 

from the cluster head for the query and the other one is from 

the intruder. 

We conclude that we can use the total number of messages 

received to detect intruders if we know the normal number of 

messages it receives from its cluster head per time unit t. 

4) Difference between Messages Received and Sent 

This metric measures the difference between numbers of 

messages that go out and that come in in each node. An 

intruder will have a big number of messages received 

comparing to a single “message-out” in a single iteration. As 

for a legitimate node this difference should remain zero, either 

infected or not, whatever messages they receive, they respond 

to them. Cluster heads should have a bigger difference than 

intruders. That is due to the number of nodes in one cluster is 

bigger than the total nodes that an intruder could approach 

within its range.  

We keep track of this metric to allocate intruders, and plot 

each node based on its location. It is quick in detecting 

intruders but it falsely detects cluster heads as intruders for the 

same reason explained above. To avoid this we set a threshold 

for cluster-head values to be identified and then all the 

intruders will be easily pointed out based on this metric with 

100% accuracy. 

B. Measures of Purposefulness 

We use metrics that measure how much each node is 

contributing to the purpose of the network. For example nodes 

with MAX values are considered to be purposeful because the 

query of interest is to find the maximum reading, whereas 

nodes with low values are not.  

Intruders are not only highly active, but also they don’t 

serve the main mission of the network, which is monitoring 

the phenomenon. Any node that contributes to the query will 

be considered a useful node, but if it does not add any value to 

the network, then a flag will be raised for being an intruder. 

We present Usefulness metric to measure the purposefulness 

of each sensor node.  

Usefulness was explained in Section 2 as a method to 

selective querying.  It is used as a metric to measure the 

Usefulness of a node.  One reading from an individual node is 

not valuable, rather we are interested in knowing its 

contribution to answer the query. This notion is captured in 

the concept of Mutual Information or Trans-information 

denoted by I(X, Y) for two random variables X and Y. Trans-

information measures the quantity of information that can be 
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obtained about X by observing Y. In our case, we use this 

concept to define Usefulness, a time-variable correlation 

between a query Q and a sensor node Ni, up to the current time 

t. We are interested in the amount of information that can be 

learned about the query result from interrogating node Ni. The 

trans-information of Q and Ni is denoted as: 

 )],[
)()(

),(
log(),(),,(   ttt

mpqp

mqp
mqptNiQU

i

i
i     (3) 

where mi is the message associated with node Ni and p(q) is the 

probability of query q, and p(q,mi) is the joint probability of q 

and mi, given the discrete probability distribution calculated 

over period ∆t. We focus on recent history over a selected time 

interval of length δt. The relevance of a node to the query will 

vary over time, because natural phenomena are continuous 

over time and space. We assume that the relevance of a node at 

present time is highly correlated with its relevance over the 

recent history. This is explained in details in [15][16]. 

An example is shown in Table I, a snap shot of sensor data 

for only 10 nodes from iterations 11-51.The query is: 

SELECT MAX  

FROM ALL Nodes  

EVERY 5 Periods 

     The event of interest is the maximum value, which means 

to select the maximum temperature if nodes are used to 

measure temperature. As seen in Table I, Max value in the 

16
th

 iteration is node 5 then it moves to node 9 in the 31
th
 

iteration, and so on. The relevance of the nodes is accurately 

reflected by their Usefulness values. Nodes that have values 

close to the max value, have higher Usefulness than others. 

Usefulness for the values in the selected iterations is shown in 

Table II. To calculate the Usefulness, we need a history of 

each node, Usefulness is being built over a history of 5 

iterations back.  

TABLE I.  A SNAP SHOT OF NODES DATA 

 T11 T16 T21 T26 T31 T36 T41 T46 T51 

N1 

N2 

N3 

N4 

N5 

N6 

N7 

N8 

N9 

N10 

0 
0 

0 

0 
0 

0 

0 
0 

0 

0 

0 
0 

4 

5 
29 

0 

0 
0 

0 

0 

0 
8 

22 

0 
38 

0 

0 
0 

0 

2 

80 
44 

22 

0 
51 

0 

0 
0 

0 

0 

0 
0 

0 

0 
0 

0 

0 
0 

36 

0 

0 
0 

2 

1 
6 

0 

0 
0 

0 

0 

0 
0 

0 

0 
44 

58 

0 
0 

0 

0 

0 
0 

56 

54 
32 

0 

0 
0 

0 

0 

0 
0 

1 

0 
29 

0 

0 
0 

0 

0 

Qry 0 29 38 80 36 6 58 56 29 

 

 

TABLE II.   USEFULNESS 

 T11 T16 T21 T26 T36 T41 T46 T51 

N1 

N2 

N3 

N4 

N5 

N6 

N7 

N8 

N9 

N10 

2.26 

2.26 

2.26 

2.26 
2.26 

2.26 

2.26 
2.26 

2.26 

2.26 

0 

0 

0.217 

0.69 
0.217 

0 

0 
0 

0 

0 

0 

0.21 

0.57 

0.69 
0.69 

0 

0 
0 

0 

0.21 

0.21 

0.69 

0.69 

0 
0.69 

0 

0 
0 

0 

0.69 

0.57 

0.57 

0.57 

1.33 
0.45 

1.33 

1.33 
1.33 

1.48 

1.33 

0 

0 

0.21 

0.21 
0.21 

0 

0 
0 

0.69 

0 

0 

0 

0 

0 
0.41 

0.21 

0 
0.69 

0 

0 

0.69 

0 

0.21 

0.21 
0.69 

0.69 

0 
0 

0 

0 

 

 

 

C.  Measures of Intensive Purposefulness 

These set of metrics capture the combination of intensity 

measures and purposefulness measures together. That means 

nodes should be characterized by their effect on the network 

rather than by some classification of their intentions. 

Therefore, an innocent node is positively contributing to the 

operation of the network, even if it is an intruder. An intruder 

node is the node whose operation is a burden on the network, 

even if the node is legitimate.  

We have a set of metrics that capture intensive and 

purposefulness at the same time. 

1) Utility  

We use the concept of Utility to capture the combination of 

Usefulness and cost. The Utility of a node Ni, at the present 

time t for a query Q, is denoted by f(Q, Ni, t) and defined as a 

function that is directly proportional to Usefulness and 

inversely proportional to the cost of using Ni.  

Utility (Ni, Q, t) = Usefulness (Ni, Q, t)/Cost (Ni, Q)         (4) 

where Cost (Ni, Q) is the cost of querying node Ni to compute 

query Q. Utility shows that after 50 iterations, intruders are 

clearly identified and their Utility values are lower than 1 (the 

Usefulness default value for all nodes is 1, and the cost value  

is 1 unit).  

2) Usability 

Sensor nodes die out when they exhaust their power. We 

give preference to nodes with a high power reserve and 

exclude nodes who have exhausted their power. The Usability 

of a node Ni , at the present time t for a query Q, is defined by 

Usability (Ni, Q, t) = Utility (Ni, Q, t) * Power (Ni)          (5) 

A node Ni will have the highest Usability if it has the 

highest Utility and the highest residual power. A node with no 

residual power will have a Usability of zero, regardless of its 

Utility. The higher the Usability of a node, the higher is its 

probability of being legitimate node. 
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Simulation results have established the effectiveness of this 

approach. The life of the network is always multiplied by the 

inverse of the ratio S0/S. 

We can consider Usability as an efficient intrusion 

detection metric in this setting, but it has some limitations: 

 Some intruders might have finite power supply. After it 
lunches its attack it dies soon after that. It is like an 
intruder commits a suicide and happily ends its attacks 
with some casualties. It is hard to catch this kind of 
intruder using our approach assumption, we assume that 
the intruder has infinite power which is the case in most 
DoS attacks. 

 Smart intruders can deceive the network about their 
residual power level, so the intruder will stay hidden in 
this case.  

3) Contribution  

 The Contribution, of a node Ni to the monitoring task, is 

measured by the power used in communication modulated by 

the Usefulness of the information communicated. 

The Contribution of a node Ni to query Q at time interval 

starting from t and having duration δ is denoted T (Ni, Q, t, δ) 

and defined as the weighed sum of Usefulness U (Ni, Q, tk) 

*C(Ni, Q, tk) where C(Ni, Q, tk) is the amount of power used 

by node Ni in participation to computing query Q at time tk in 

the interval [t, t + δ]. If node Ni was not interrogated at time tk, 

then its contribution is zero. Contribution T(Ni, Q, t, δ) is 

defined by: 

T(Ni,Q, t,      ∑     (          (               
       
        (6) 

A node with high Contribution value means it is often 

interrogated and it is useful when interrogated. A node with 

low Contribution value is never interrogated, or it is often 

interrogated while it has a low Usefulness or low Contribution 

value or both. Nodes that happen to have a low Usability are 

bound to have a low Contribution. Also nodes that are never 

interrogated are also bound to have a low Contribution. Nodes 

that have a low productivity but use no power are harmless 

nodes. Intruder nodes should have low Contribution,   but they 

consume high amount of power.  So the Contribution by itself 

is not an accurate measurement for intruder detection. 

Therefore we introduce the last concept, Convergence in 

which we use Contribution as an input.  

4) Convergence  

We define the concept of Convergence between a node’s 

operation and the network’s main function, via accurate 

computation of the query. We quantify the level of 

Convergence of a node Ni with the goals of the network by the 

extent to which the activity (measured by power) within that 

node was used to contribute to the accuracy of computation 

query Q.  

We need another parameter along with Activity, to 

distinguish between nodes whose activity is supporting the 

main function of the network and nodes whose activity is not. 

That captures the combination between the Contributions of a 

node Ni, to the query Q during time interval that starts at t and 

lasts for δ units is denoted by G(Ni, Q, t, δ) and defined as: 

G(Ni, Q, t, δ)  = T(Ni, Q, t, δ) / A(Ni, t, δ)             (7) 

The Convergence measures the ratio between the 

Contribution the node made to the query and the total power 

consumed. The higher the Usefulness of a node, the higher 

will be its Convergence, unless it consumed power in other 

tasks than computing the query.  

The essence of this approach is that any node whose 

activity by far exceeds its contribution to the main function of 

the network can be counterproductive and safely considered as 

intrusive, whether it is or not. 

This does not distinguish between the cases where the 

source of this activity is an external node that infiltrated the 

network or an internal node that was attacked by an intruder, 

and does not distinguish between accidental and malicious 

intrusions. All have the same potential effects, they need to be 

identified and managed so as to limit control and cease the 

damage that they are causing the network.  

In other words, with this approach we no longer have a 

problem of false negatives or positives. Furthermore, our 

approach is unique in the sense that it takes its “order” from 

the activity on the ground rather than from some arbitrary 

attributes that have no necessary bearing on the function of the 

network. 

IV. NETWORK IMMUNIZATION AND NODES SHUT DOWN 

This is our proposed approach for network immunization in 

order to save the power of the attacked nodes and hence, 

extend the life of the overall intruders. We consider a scenario 

where some of our regular nodes were hijacked and 

programmed to act like intruders.  

The cluster head has a defined threshold for each metric.  

Once intruders are detected, the next question is what to do 

with them? Intruder nodes are not under the network’s control 

anymore, and most likely will not be programmed to suicide 

just because they are told that their performance is low. We 

cannot force them to self-destruct, but we can protect the rest 

of the network by cancelling out or minimizing their impact.  

Intruder has a relatively low Convergence value due to 

activity that is not related to answering the network query, and 

most likely consisting of sending messages to neighbouring 

nodes in an effort to deplete their power. Immediate 

neighbours are shown in yellow because their Convergence 

values are also declining. 

There are two possibilities: first, after some time, the effect 

will propagate whereby all of the immediate neighbours are 
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flagged as intruders and they start “infecting” their immediate 

neighbours. Second, die early without affecting the 

neighbouring nodes, this assumption is less harmful to the 

overall network. In both cases our approach will detect 

intruders early as well as infected nodes and save the network 

by requesting them to sleep for a certain predefined time then 

wake up and resume their functions for another certain 

predefined intervals. 

We cannot control the outsider that has been flagged as 

intruder; we can prevent and stop the propagation of its effect 

on the network. We were inspired by a biology strategy to 

apply in the sensor network; apoptosis, which is about self-

initiated, shut down of a cell that recognizes that its current 

mode of operation may be harmful to the network.  

The cluster head is the decision maker, so that it gives order 

to the attacked sensor nodes so that they shut down for a 

random time with a predetermined distribution whenever they 

recognize that they may be the subject of an attack.  

Unlike the biological systems, the shutting down is not 

permanent for two reasons: The low Convergence metric of a 

node may be the result, not due to an intrusion, but due to lack 

of activity in that area, which is shown in Figure 8 during 

iterations nodes with low Convergence, because they were not 

centred around the event, but the history is being built up with 

time. The second reason, if we were to shut the nodes 

permanently we run the risk of “killing” the network 

prematurely, thus fulfilling the intruder’s mission, to destroy 

and ruin the whole purpose of the network.  

V. PERFORMANCE METRICS 

To evaluate our approach, it is important to build the 

following confusion metrics which represent the comparison 

between the detection and actual diagnoses of a node:  

 

 

Fig. 1. Confusion Matrix 

where FN is false negative, FP is false positive, TN is true 

negative, and TP is true positive. 

An efficient intrusion detection requires high degree of 

accuracy and detection rate, and low false alarm rate.  The 

performance is assessed in terms of accuracy, detection rate 

and false alarm rate as in the following performance metrics: 

1) Detection Rate = ( TN/ Total Attacks)*100 

2) False Negative: Percentage of Undetected Attacks =  

(FN / Total Attacks) *100 

3) False Positive: Percentage of False Detection=  FP/ 

Total Attacks) *100 

4) Number of Errors = FP + FN 

5) Accuracy =   (TP + TN)/ (TP+ TN + FP + TN) 

 

VI. SIMULATION AND RESULTS 

We used MATLAB simulation to study how accurate and 

effective our approach is in detecting intruders. We simulated 

the behaviour of one cluster. We used 200 nodes placed on a 

100 x 100 grid. All input values are built by using 

 e wbyaxhyxf /)2)(2)((*),(      (8) 

where h is the range of the phenomenon, or the height of the 

peaks in the data, w the radius of the phenomenon or the width. 

In this equation, the event is centered at (a, b), with a peak in 

value at that point and exponentially decline as we get further 

from the center (a, b). The smaller is w, the narrower the peak 

is, and the steeper the decline is. With a large w, the data 

changes more slowly. (a,b ,the location of max or the center of 

the peak, moves with time along with h and w. In other words, 

a and b are in fact functions of time t. 

We have used linear movement pattern, as shown in Figure 

10. The interest is to find the MAX reading and the max value 

moving linearly in each iteration.  

All the nodes are initialized with full battery of 128 power 

units. Each query costs one unit. The query we simulated is 

finding the maximum values among S0 or the subset of nodes 

that include the scrutiny and exploratory nodes.  

The simulation starts by initializing the sensor nodes values 

as discussed above, and randomly scatter them on the grid. At 

the first interaction, we pick our subset nodes S0 randomly, we 

query the same nodes for 5 iterations then calculate its 

Usefulness, sort the nodes based on their Usefulness values, 

keep the highest 20 nodes in the scrutiny set, and pick 5 nodes 

randomly to replace the exploratory set and query this new S0 

for the next 5 iterations.  

The Activity metric is calculated at the end of time interval 

which is 5, to compare the power lost during that time. The 

battery of a node loses one unit in each communication action 

with others.  

During each of the iterations, we query the maximum 

values, then calculate the Usefulness for the nodes, then all the 

other metrics Utility, Usability, Contribution and Convergence 

are also calculated to keep track of these values for each node. 
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Fig. 2.  Activity  

 

 

Fig. 3.  Total Messages Received 

 

Fig  4. Message in – out difference 

 

  

Fig. 5. Relative Power Usage  

Figures 2–5 represent the intensity metrics. These metrics 

measure how active the network is. Intruders were easily 

flagged with 100% accuracy. Zero false negative, and false 

positive and no errors, except for total message received, our 

methods show 4 errors  as it flagged cluster heads as intruders. 

This kind of error can be avoided by setting two thresholds or 

a range with upper bound and lower bond, for example [12-30] 

values within this range are intruders, less than that are 

legitimate nodes, more than that range are legitimate cluster 

heads.  

 

 Fig. 6. Utility 

 
Fig 7. Usability  
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Fig.8. Convergence  

Figures 6 - 8 represent the intensive purposefulness metrics.  

Figures 6 - 8 shows that it takes longer iterations to detect 

intruders than intensity metrics, which is expected because it 

takes into account two measures, how active a node is besides 

how useful that node is in the network. This approach shows 

all the legitimate but not useful nodes with low values in all 

intensive purposefulness metrics, values that are almost close 

to the intruders’ values. This could be because, either these 

innocent nodes are not being active in participating in the 

query, or their Usefulness is low. The reason why we have 

straight lines of Utility in Figure 6 with value equal to one is 

that we query only 12 % of the nodes, so a lot of them are not 

being interrogated at all. The straight line represents those 

nodes. We use a threshold to separate intruders from others 

since it might catch some of these nodes that are not being 

interrogated, which explains the false positive values in Table 

III. 

 Our goal is to query the nodes of high usefulness. If the 

threshold catches those non-intruder nodes and flags them as 

suspicious, it will not affect the functionality of the network. 

Moreover, it does not matter if we lose few innocent nodes 

and avoid communicating with them, they are not useful 

anyway. They will naturally be avoided by our querying 

algorithm. For example, a node that give low readings every 

time we send a SELECT MAX query, at the same time it 

shows some high activities, that means it might have been 

infected by a malicious node and got engaged in unknown 

activities with it, such node will be flagged as intruder, which 

explains the error rate and false positive values in Table III. 

Finally, Usability in Figure 8 shows clearly that it detects 

intruders in early iterations with 100% accuracy, as early as 

intensity metrics. At the same time, it considers the 

purposefulness of the nodes. Therefore, Usability metric in 

our simulation setup is the most effective metric that 

combines the best of the three measures.   

Figure 9 shows the deployment of nodes.   The nodes are 
randomly scattered on the field of interest, every dot 
represents one node. Any node within a node’s 

communication distance is considered a neighbour. The circle 
shows an intruder and its direct neighbours inside the circle 
that got infected.   

 

 

 

Fig. 9. All the nodes  

 

  Fig. 10. Linear Event Movement 

 

Fig.  11. Zigzag Event Movement 

Figures 10 and Figure 11 show two kinds of sensor input 

data. We tested them both to see if we still get accurate results 

with different input data. In Figure 10 the event, which is 

MAX, moves linearly in the network. Figure 11 it moves like 

a zigzag in the network. No significant difference is observed 

in our results between the two kinds of data.  
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TABLE III.  PERFORMANCE METRICS  

 Accuracy Detection 

Rate 

FN FP Err 

Activity 1 100% 0% 0% 0 

Msg. Rec. 0.98 100% 0% 40% 4 

Msg in-out 098 100% 0% 0% 0 

Rel. Power 1 100% 0% 0% 0 

Utility 0.90 90% 10% 100% 11 

Usability 1 100% 0% 0% 0 

Convergence 0.93 80% 20% 40% 6 

 

Table III shows the performance metric results for each one 

of the intrusion detection approaches. As a result Activity, 

Relative Power Usage and Usability are the most effective 

and accurate with no error.  

 

VII. CONCLUSION AND FUTURE WORK 

 In this paper, we proposed efficient intrusion detection 

metrics that are based on three criteria: intensity, 

purposefulness and intensity purposefulness.  

To detect intruders, we took two things in mind. First:  

intensity, or how active the nodes are in terms of 

communicating with each other, which can be measured using 

power consumption. Legitimate nodes have reasonable 

intensity of activities to do their job to monitor the network 

and to respond to queries, whereas intruders have more 

intensive activities, thus,  more power consumption. 

The other criteria is purposefulness of these nodes, in other 

words, legitimate nodes should have high purposefulness 

values whereas intruder’s purposefulness values are always 

low. We defined and used a set of metrics to measure that. 

 The third criteria is the combinations of intensity measures 

and purposefulness together, which means nodes that are active 

in performing a meaningful service to the network, rather than 

active in the network doing nothing useful. We marked last 

kind of nodes as intruder. We injected intruders into the 

network that does not participate in anything to the query but 

perform one type of denial of service attack. In this kind of 

attack, intruders behave in a way to make other nodes busy by 

engaging them in useless communication and forcing them to 

respond to those messages.  Intruders are highly active but not 

useful. We tested if we can detect intruders based on the 

information that is already in the cluster-head which sends out 

a query to all nodes to get their readings. We use this 

information and feed them to our matrices that result in 

classifying nodes as: intruder, not intruders, or suspicious. 

Unlike other intrusion detection approaches that require a lot 

of communication and calculations about the current status of 

each node, our approach is efficient, cheap and accurate to 

detect intruders.  

We introduced different metrics and explained in what 

setup each one of these metrics work the best. A threshold 

should be set to distinguish between intruders and other nodes. 

Our simulation shows that Activity, Relative Power Usage and 

Usability metrics are most effective and accurate with no 

errors. In this paper, we have also suggested a strategy that is 

designed to immunize the network against the harmful effects 

of the intruders. This was designed to stop the propagation of 

the intrusion by disabling the set of nodes that were detected 

as infected nodes or the neighbours to the intruder for a 

randomly generated length of time.  

For future work, we want to be able to detect other types of 

intruders such as mobile intruders that continue to move in the 

network and cause damage, so our immunization strategy will 

not be valuable in this case, we need to dynamic 

immunization strategy and keep track of the intruder path and 

take action as the intruder moves.  
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