Journal of Communications Technology, Electronics and Computer Science, Issue 5, 2016

ISSN 2457-905X

Improvement in Bug Localization based on Kernel
Extreme Learning Machine

Marzieh Rahmati, Mohammad Ali Zare Chahooki

Electrical and Computer Engineering Department
Yazd University
Yazd, Iran
rahmati@stu.yazd.ac.ir, chahooki@yazd.ac.ir

Abstract— Bug localization uses bug reports received from
users, developers and testers locate buggy files. Since finding a
buggy file among thousands of files is time consuming and
tedious for developers, various methods based on information
retrieval is suggested to automate this process. In addition to
information retrieval methods for error localization, machine
learning methods are used to. Machine learning-based approach,
improves methods of describing bug report and program code by
representing them in feature vectors. Learning hypothesis on an
Extreme Learning Machine (ELM) has been recently effective in
many areas. This paper shows the effectiveness of non-linear
kernel of ELM in bug localization. Furthermore the effectiveness
of Different kernels in ELM compared to other kernel-based
learning methods are analyzed. The experimental results for
hypothesis evaluation on Mozilla Firefox dataset show the
effectiveness of Kernel ELM for bug localization in software
projects.

Keywords— machine learning; Extreme learning machine;
information retrieval.

I. INTRODUCTION

Quality of software is vital for the success of software
project. However a lot of effort is made for increasing the
quality of software project, but still maintainers find
themselves face with a stream of bug reports. Once a bug
report entered the system and approved, developers should
investigate buggy source code files and solve them. Using bug
report to find buggy files in a large software system with lots of
bug reports is time consuming and tedious [1].

There are two methods for bug localization. Some methods
are based on test cases and another group is based on bug
reports. There are a variety methods based on test cases that do
the same thing, but in a different manner [2], [3], [4], [5]. The
second group that based on bug reports are worked in two
categories, information retrieval and machine learning. In
recent years, researchers have been using information retrieval
methods to find buggy files. They suppose the bug reports as a
query and rank the source code files according to the
relationship between the bug report and source code files.
Developers examine the returned files and solve the defect [6],
[7]. In machine learning based method, bug report represents as

a feature vector and source code files is the class labels of
dataset [1].

In this paper, we use the content of bug report and different
methods based on machine learning to predict buggy files.
Although machine learning based method used in a variety
researches area, but there are few researches on bug
localization based on bug reports that uses machine learning
methods [1]. Because of this, we focus on machine learning
methods. Therefore, first, we extract different information such
as summary, description and meta-data from bug reports. We
train our model with 70 percent of bug reports then test it with
the remaining data. Since Extreme Learning Machine (ELM)
and the kernel-base of ELM have been used in different
applications of machine learning and in most of the
applications have better result than other kernel-based method
such as Support Vector Machine (SVM), in this paper we use
Kernel Extreme Learning Machine (KELM) [8] to locate the
bug. Since ELM method like SVM method are developed in
different kernels, in this paper KELM is compared with kernel-
based SVM methods. The evaluation result of this research on
Mozilla dataset showed the effectiveness of RBF kernel in
ELM method.

The remainder paper is organized as follows: section 2
describes ELM method, section 3 describes Evaluation results
and section 4 discusses conclusion and future work.

Il. EXTREME LEARNING MACHINE

In this section we summarize the method of ELM [8]. In two
recent decades, SVM has been used in many applications of
machine learning. It is important that ELM works on single
hidden layer feedforward network (SLFN). In ELM, hidden
layer doesn’t need to be tune and transfer function of this layer
is specific.

A. ELM models based on constraint-optimization

First time ELM developed for single hidden layer
feedforward neural networks and after that extended to
“generalized” SFLN that neurons doesn’t look like each other.
Fig. 1 shows SLFNs that has a L hidden node.

Journal of Communications Technology, Electronics and Computer Science, Issue 5, 2016

Input layer

Hidden layer Output layer

Fig. 1. Single hidden layer of the neural network.

The output function of SLFN will be like (1):

Bihi(x) = h(x)p (1)

1

f&) =

L

=
In this equation, function h(x) mapped to d-dimension

input space to L-dimension hidden layer feature space. S is a

weighted vector between hidden layer and output layer.

For example, if we had binary class classification, decision

function of ELM will be like (2):

f(x) = sign(h(x)B))

In contrast to the common learning method, is that ELM not
only tries to minimize the training error, but also try to
minimize the norm of output weight. Based on Bartlett’s
theory [9], minimizing the output norm in addition to
minimizing train error bring better generalization in
performance. ELM function that tries to minimize training
error and norm of weight will be like (3):

Minimize: ||HB — T||? and ||B]| 3)

In (3) H is hidden layer matrix and define as follow:

H= = @)

h(xl)l hy (x1) hL(xl)l
h(xy) hy (xy) hy(xy)
In fact minimizing ||B]|| is equivalent to maximizing the
margin between two class in binary class classification that

... 2
means maximizing the m .

The minimal norm least square method has been used in ELM
method for optimization as follow:

g =HIT)

ISSN 2457-905X

In (5) H' is the Moore—Penrose generalized inverse of matrix
H [35], [36]. The orthogonal projection method is one of ways
that calculate Moore—Penrose generalized inverse of matrix H.

This method is used when HT H isn’t a singular matrix and we
have HT = (HTH)"*HT OR HHT that is not singular and
HY = HT(HHT) ' is true. According to the ridge regression
theory, one can add a positive value to the diagonal of H™H or
HH": the result tends to have better generalization
performance. So the output weight can be like (6) and (7):

1
p=H"(_+HH")'T

1 -1 6
f(x) = h(x)B = h(x)HT (E + HHT> T ©)

B=C+HTH)UHTT |
1 _ ()
f(x) =h)B = h(0)(+ HTH)'HTT

In contrast to SVM methods in ELM mapping function has
been known [10]. Various form of mapping function in SLFNs
is shown in Table I.

TABLE I. DIFFERENT MAPPING FUNCTION FOR SLFNS

Name of function Equations
1
i id functi G(a,b,x) =
Sigmoid function (a,b,x) 1+ exp(—(a.x + b))
. . (1, ifaax—b=0
hard_limit function | G(a, b, x) —{ 0, otherwise.

Gaussian function
multiquadric
function

G(a,b,x) = exp(—blx — all?)

1
G(a,b,x) = (lx — al? + b?)2

B. Different form of ELM

ELM has different models for working with different form of
data. Remainder of this section present the equations about
classification with one output and multi output. After that
using kernels for ELM improvement will be discussed.

1) ELM multiclass classification with single output
ELM can estimate every continues function. Because of this
feature, one possible way for multiclass classification is to
label the output with attention to ELM output. Equation (8)
show the optimization problem.

N

s 1 2 1 5

Minimize Lprimai—pim = E“Bll + CE E &
i=1

subject to:h(x)f=t;,—& i=1,..,N

®)

Journal of Communications Technology, Electronics and Computer Science, Issue 5, 2016

For solving ELM, we should solve the dual optimization
problem that is shown in (9).

.. 1 2 1 C 2
Minimize Lpyaipim = 2 [BII* + CEZ &
N i=1 (9)
_Z a;(h(x)p —t; + &)

i=1
2) multi class classification with multi output
In this case, we have m class and m output. If one class was p

which we see as follow:

P
t;=1[0,..,T,..,0]" (10)
In this case optimization problem is like an equation (11);
o 1 2 1 N 2
Minimize Lprimai—pim = 3 | |ﬁ|| + CEZ & (11)
i=1
subject to:h(x)B =t"—&" i=1,..,N
Its dual of an optimization problem is like (12):
N
e 1 2 1 2
Minimize Lpyaieim = E”ﬂll + CEZ $i
Nom = (12)
- Z Z a;j (h(xp)B; —ti; + &)
i=1 j=1

3) ELM based on kernel
If mapping function was unknown, we can use kernel in ELM.
Equation (13) show the kernel base-ELM.

Oy = HHT:-QELM ij = h(x;). h(xj) = K(xi:xj) (13)

In this way output function can be like (14):

-1

I
F(x) = hGOHT (E + HHT) T
K(x,xl) T I -1 (14)
P G

As you know, in SVM binary class classification training
data split with line. This method works when the problem was
linear but if the problem was nonlinear, instead of using
nonlinear model, transfer the problem to new space and using
linear model to solve the problem. Actually the linear model
in new space is equivalent to nonlinear model in original
space. This paper cover five kernel function in Table II.

K(x,xy)

ISSN 2457-905X

TABLE Il. DIFFERENT KERNELS USE IN THIS PAPER

Kernel ; | Param
name ormula oter
Linear k(x,y) = x"y NO
RBF llx — yli?
(Gaussian) k(x,y) = exp(— T) o
Polynomial k(x,y) = (xTy + ¢)® ¢ d
Sigmoid
(Hyperbolic k(x,y) = tanh(x xTy + ¢) . ¢
Tangent)
k(x,y) =
N Xij—C yi—c¢
Wavelet =1 (T) h(a) ab,c

h(x) = cos(bx) exp(— xz—z)

I1l. EXPERIMENTAL RESULTS

In this section, ELM with five kernels which discuss in
Table IV compare with each other. After that for seeing the
effectiveness of ELM, this method compares to kernel base
SVM and feed forward neural network.

The Dataset that is used for experimental result is one of the
Firefox modules that contain bug reports [1].

A. Dataset

As mentioned before, dataset that used in this paper is bug
reports of the Bookmark module in Firefox. The reason of
using this dataset is that files have been fixed for each bug
report and have been attached to them. Some projects have
been needed to have a link between bug report and source
code file. This link is for identifying the fixed file, but most of
the time there are lots of missing link that causes noisy data

[1].

Bug reports in Mozilla are directly reviewed by Mozilla
developers. This developer attaches a patch file in bug reports.
In the next step these files reviewed by “Core” developers and
in final step accepted files submit to bug reports. So these data
don’t have the problem of missing link and noisy data [1].

Some preprocess need to be done on bug reports. In these
bug reports desired feature is extracted from Summary,
description and metadata. Metadata contains basic information
like bug priority, bug severity, product, component, and etc.
these features don’t need any preprocess but the text in
description and summary need preprocess. For this purpose
tokens is extracted from a summary and description, after that
they stem and stop words is removed. Feature vector will be
frequenting of these extracted tokens. Patch file that is
attached to the bug report is extracted for the class label.

The patch is a text file that shows the difference between
the original version and fixed version. In this research, Patch
file is identified and extracted with designing and
implementing a parser [11]. Table V shows the characteristics
of data that is used in this research. As you see in the Table
VI, there is 1927 samples that first 70 percent base on bug id

Journal of Communications Technology, Electronics and Computer Science, Issue 5, 2016

is training sample and 30 percent is test sample. There is 557
classes and 6468 features.

TABLE Ill. CHARACTERISTICS OF DATA

ISSN 2457-905X

TABLE VI. RESULT OF SVM IN DIFFERENT KERNELS

Total
Feature Number number . Module
period
number of classes of bug name
reports
21-07-2001 -
6468 557 1927 Bookmark
2-04-2010

B. Evaluation result

This section describe the performance measure that we used
in our evaluation. Likelihood shows the accuracy of our
method. Equation (15) is likelihood.

. . c
L =—
iklihood N+ Ny,

(15)
In this equation N is bug reports that predict correctly and
N,¢ is bug reports that predict incorrectly. Precision shows the
number of the files that predict correctly over the number of
files that is recommended by our method. Recall shows the
number of file that predicted correctly over the number of
fixed file. Equation (16) and (17) shows precision and recall.

Fg NF
precision = % (16)
R
Fg NF,
Recall = % a7)
B

We donate the set of fixed file to Fgz and the number of
recommended file to Fy.

C. Result

ELM and SVM with different kernel is examined on desired
data. Because ELM is simplification of SVM that execute on
single hidden layer feedforward network, this experiment is
done on SVM, ELM and SLFN. As we mentioned before we
use the first 70 percent of data according to bug id for training
set and the remaining for test set. Experiment result for SVM
is shown in Table VIII. As you see in Table IX linear kernel
have the best result in SVM method.

After that we see the result of feedforward neural network
in Table 1v. This neural network has two layer that the number
of first layer is the number of features and the number of
second layer is one. We use different permutation of logsig
(logistic sigmoid), tansig(tangent sigmoid), purelin(linear) as
transfer function. As we see in Table v result of neural
network is very low and the best result is for sigmoid transfer
function for first layer and linier transfer function for second
layer.

Likelihood precision Recall kernel
6.3148 4.9094 9.04396 POLYNOMIAL
6.3148 4.9094 9.04396 RBF
3,7854 3,5861 7.5924 WAVELET
16.955 11,4137 18,4229 LINEAR
3,5467 3,3112 6,6154 SIGMOID

TABLE VII. RESULT OF SLFN
likelihood precision Recall
classifier

0.2595 0.3906 0.7885 newff+ogsig*+logsig*

0.1730 0.1971 0.6001 Classifier

newff+tansig+tansig

0.8996 0.2408 0.5443 classifier

newff+tansig+logsig

14532 0.3640 0.0397 classifier

newff+logsig+tansig

24221 0.7830 2,2540 classifier

newff+logsig+purelin

1,4013 0.4057 0.9630 classifier

newff+tansig+purelin
*transfer function in first layer ;**transfer function in second layer

In this step KELM method is done. Table XIV and XV is
shown the result. Table XVI show the best parameter for each
kernels in ELM. According to best parameters, Table XVII
shows evaluation result for five kernels. As we see in the
table, ELM method have better result compared to SVM. As
you see in the table RBF kernel has the best result in ELM. In
Fig. 2 ELM and SVM compared to each other. As you see
RBF kernel of ELM has the best result.

TABLE VIII. DIFFERENT PARAMETERS OF ELM

Parameter3 | Parameter2 | Parameterl A
- 0.2 1 248 POLYNOMIAL
- - 19 0.9 RBF
1 5 4 100 WAVELET
- - 1 1 LINEAR
- 10 5 300 SIGMOID

Journal of Communications Technology, Electronics and Computer Science, Issue 5, 2016

TABLE IX. RESULT OF DIFFERENT KERNEL IN ELM

Likelihood precision Recall
32.093 16.581 31.514 POLYNOMIAL
32.266 16.60 31.55 RBF
20.7536 10.3022 18.3391 WAVELET
25.8823 13.0911 24.9476 LINEAR
16.4879 10.0139 20.3978 SIGMOID
35
30 N
25 E F E
20 -
15
10 =N M H H
0 B 77‘? ii'ii SN | ‘iiﬁ“

Recall precision Likelihood

& polynomial/SVM & polynomial/ELM ERBF/SVM

ERBF/ELM Liwavelet/SVM i wavelet/ELM
i Linier/SVM 4 Linier/ELM H Sigmoid/SVM
ESigmoid/ELM

Fig 2. Comparison between SVM and ELM.

ISSN 2457-905X

IV. CONCLUSION

Trying to keep the software quality is vital in software
projects. Despite all these effort, developers face with lots of
bug reports. Since fault localization is time consuming and
overwhelming, researchers trying for automating the bug
localization process. In this paper we use kernel base extreme
learning machine for bug localization.

In future research, we can use the various method of
extreme learning machine to improve the results. Also, we can
use multiple kernel extreme learning machine for improving
the result.

(1]

[2]
(3]

(4]

(5]

(6]

[’

(8]

[°]
[10]

[11]

REFERENCES

D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this bug?
A two-phase recommendation model,” IEEE transactions on software
Engineering, vol. 39, no. 11, pp. 1597-1610, 2013.

M. Weiser, ”Program Slicing,” Proc. Of the 5th international
conference on software engineering, no. 4, 1984, pp. 352-357

H. ledgard and M. Weiser, “Programmers Use Slices when
Debugging,” Communications of ACM, vol. 25, no. 7, pp. 446-452,
1982.

Korel, Bogdan, and Janusz Laski. "STAD-A system for testing and
debugging: User perspective." Proc. of the Second workshop on
software testing, verification, and analysis, 1988, pp. 13 - 20.

C. Liu, et. al., "Statistical debugging: A hypothesis testing-based
approach," IEEE Transactions on software engineering, vol. 32, no. pp.
831-848, 2006.

W. Lafayette, “Retrieval from Software Libraries for Bug
Localization : A Comparative Study of Generic and Composite Text
Models,” In proc. of the 8th working conference on mining Software
repositories, 2011, pp. 43-52.

J. Zhou, H. Zhang, and D. Lo, “Where Should the Bugs Be Fixed ?
More Accurate Information Retrieval Based Bug Localization Based
on Bug Reports,” 34th international conference of software
engineering (ICSE), 2012, pp. 14-24.

G. Huang, S. Member, H. Zhou, X. Ding, and R. Zhang, “Extreme
Learning Machine for Regression and Multiclass Classification,” vol.
42, no. 2, pp. 513-529, 2012.

G. H. A, Q. Zhu, and C. Siew, “Extreme learning machine : Theory
and applications,” vol. 70, pp. 489-501, 2006.

N. Cristianini and J. Shawe-Taylor, “An Introduction to Support
Vector Machines: And Other Kernel-based Learning Methods.” New
York, NY, USA: Cambridge University Press, 2000.

N. Bettenburg, et. al., “Extracting Structural information from bug
reports,” Proceeding of the 2008 international working conference on
mining software repositories, ACM, 2008.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=211

