
Journal of Communications Technology, Electronics and Computer Science, Issue 5, 2016

ISSN 2457-905X

1

Improvement in Bug Localization based on Kernel

Extreme Learning Machine

Marzieh Rahmati, Mohammad Ali Zare Chahooki

Electrical and Computer Engineering Department

Yazd University

Yazd, Iran

rahmati@stu.yazd.ac.ir, chahooki@yazd.ac.ir

Abstract— Bug localization uses bug reports received from

users, developers and testers locate buggy files. Since finding a

buggy file among thousands of files is time consuming and

tedious for developers, various methods based on information

retrieval is suggested to automate this process. In addition to

information retrieval methods for error localization, machine

learning methods are used to. Machine learning-based approach,

improves methods of describing bug report and program code by

representing them in feature vectors. Learning hypothesis on an

Extreme Learning Machine (ELM) has been recently effective in

many areas. This paper shows the effectiveness of non-linear

kernel of ELM in bug localization. Furthermore the effectiveness

of Different kernels in ELM compared to other kernel-based

learning methods are analyzed. The experimental results for

hypothesis evaluation on Mozilla Firefox dataset show the

effectiveness of Kernel ELM for bug localization in software

projects.

Keywords— machine learning; Extreme learning machine;

information retrieval.

I. INTRODUCTION

Quality of software is vital for the success of software

project. However a lot of effort is made for increasing the

quality of software project, but still maintainers find

themselves face with a stream of bug reports. Once a bug

report entered the system and approved, developers should

investigate buggy source code files and solve them. Using bug

report to find buggy files in a large software system with lots of

bug reports is time consuming and tedious [1].

There are two methods for bug localization. Some methods

are based on test cases and another group is based on bug

reports. There are a variety methods based on test cases that do

the same thing, but in a different manner [2], [3], [4], [5]. The

second group that based on bug reports are worked in two

categories, information retrieval and machine learning. In

recent years, researchers have been using information retrieval

methods to find buggy files. They suppose the bug reports as a

query and rank the source code files according to the

relationship between the bug report and source code files.

Developers examine the returned files and solve the defect [6],

[7]. In machine learning based method, bug report represents as

a feature vector and source code files is the class labels of

dataset [1].

In this paper, we use the content of bug report and different

methods based on machine learning to predict buggy files.

Although machine learning based method used in a variety

researches area, but there are few researches on bug

localization based on bug reports that uses machine learning

methods [1]. Because of this, we focus on machine learning

methods. Therefore, first, we extract different information such

as summary, description and meta-data from bug reports. We

train our model with 70 percent of bug reports then test it with

the remaining data. Since Extreme Learning Machine (ELM)

and the kernel-base of ELM have been used in different

applications of machine learning and in most of the

applications have better result than other kernel-based method

such as Support Vector Machine (SVM), in this paper we use

Kernel Extreme Learning Machine (KELM) [8] to locate the

bug. Since ELM method like SVM method are developed in

different kernels, in this paper KELM is compared with kernel-

based SVM methods. The evaluation result of this research on

Mozilla dataset showed the effectiveness of RBF kernel in

ELM method.

The remainder paper is organized as follows: section 2

describes ELM method, section 3 describes Evaluation results

and section 4 discusses conclusion and future work.

II. EXTREME LEARNING MACHINE

In this section we summarize the method of ELM [8]. In two

recent decades, SVM has been used in many applications of

machine learning. It is important that ELM works on single

hidden layer feedforward network (SLFN). In ELM, hidden

layer doesn’t need to be tune and transfer function of this layer

is specific.

A. ELM models based on constraint-optimization

First time ELM developed for single hidden layer

feedforward neural networks and after that extended to

“generalized” SFLN that neurons doesn’t look like each other.

Fig. 1 shows SLFNs that has a L hidden node.

Journal of Communications Technology, Electronics and Computer Science, Issue 5, 2016

ISSN 2457-905X

2

Fig. 1. Single hidden layer of the neural network.

The output function of SLFN will be like (1):

(1) () ∑ ()

 ()

In this equation, function () mapped to d-dimension

input space to L-dimension hidden layer feature space. is a

weighted vector between hidden layer and output layer.

For example, if we had binary class classification, decision

function of ELM will be like (2):

(2) () (())

In contrast to the common learning method, is that ELM not

only tries to minimize the training error, but also try to

minimize the norm of output weight. Based on Bartlett’s

theory [9], minimizing the output norm in addition to

minimizing train error bring better generalization in

performance. ELM function that tries to minimize training

error and norm of weight will be like (3):

(3)

In (3) H is hidden layer matrix and define as follow:

(4)

 [
 ()

 ()

] [
 () ()

 () ()

]

In fact minimizing is equivalent to maximizing the

margin between two class in binary class classification that

means maximizing the

 .

The minimal norm least square method has been used in ELM

method for optimization as follow:

(5)

In (5) is the Moore–Penrose generalized inverse of matrix

H [35], [36]. The orthogonal projection method is one of ways

that calculate Moore–Penrose generalized inverse of matrix H.

This method is used when isn’t a singular matrix and we

have () OR that is not singular and

 () is true. According to the ridge regression

theory, one can add a positive value to the diagonal of H
T
H or

HH
T
; the result tends to have better generalization

performance. So the output weight can be like (6) and (7):

(6)

β (

)

 () () () (

)

(7)
β (

) ,

 () () ()(

)

In contrast to SVM methods in ELM mapping function has

been known [10]. Various form of mapping function in SLFNs

is shown in Table І.

TABLE I. DIFFERENT MAPPING FUNCTION FOR SLFNS

Equations Name of function

 ()

 (())
 Sigmoid function

 () {

 hard_limit function

 () () Gaussian function

 () ()

multiquadric

function

B. Different form of ELM

ELM has different models for working with different form of

data. Remainder of this section present the equations about

classification with one output and multi output. After that

using kernels for ELM improvement will be discussed.

1) ELM multiclass classification with single output

ELM can estimate every continues function. Because of this

feature, one possible way for multiclass classification is to

label the output with attention to ELM output. Equation (8)

show the optimization problem.

(8)

| |

∑

 ()

Input layer Hidden layer Output layer

Journal of Communications Technology, Electronics and Computer Science, Issue 5, 2016

ISSN 2457-905X

3

For solving ELM, we should solve the dual optimization

problem that is shown in (9).

(9)

∑

 ∑ (())

2) multi class classification with multi output

In this case, we have m class and m output. If one class was p

which we see as follow:

(10)
 ⏞

In this case optimization problem is like an equation (11);

(11)

| |

∑

 ()

Its dual of an optimization problem is like (12):

(12)

∑

 ∑∑

(())

3) ELM based on kernel

If mapping function was unknown, we can use kernel in ELM.

Equation (13) show the kernel base-ELM.

(13) () () ()

In this way output function can be like (14):

(14)

 () () (

)

 [
 ()

 ()

]

(

)

As you know, in SVM binary class classification training

data split with line. This method works when the problem was

linear but if the problem was nonlinear, instead of using

nonlinear model, transfer the problem to new space and using

linear model to solve the problem. Actually the linear model

in new space is equivalent to nonlinear model in original

space. This paper cover five kernel function in Table II.

TABLE II. DIFFERENT KERNELS USE IN THIS PAPER

Param

eter
formula

Kernel

name

NO () Linear

 () (

)

RBF

(Gaussian)

c, d () () Polynomial

 , c () ()

Sigmoid

(Hyperbolic

Tangent)

a, b, c

 ()

∏ (

) (

)

 () () (

)

Wavelet

III. EXPERIMENTAL RESULTS

In this section, ELM with five kernels which discuss in

Table IV compare with each other. After that for seeing the

effectiveness of ELM, this method compares to kernel base

SVM and feed forward neural network.

The Dataset that is used for experimental result is one of the

Firefox modules that contain bug reports [1].

A. Dataset

As mentioned before, dataset that used in this paper is bug

reports of the Bookmark module in Firefox. The reason of

using this dataset is that files have been fixed for each bug

report and have been attached to them. Some projects have

been needed to have a link between bug report and source

code file. This link is for identifying the fixed file, but most of

the time there are lots of missing link that causes noisy data

[1].

Bug reports in Mozilla are directly reviewed by Mozilla

developers. This developer attaches a patch file in bug reports.

In the next step these files reviewed by “Core” developers and

in final step accepted files submit to bug reports. So these data

don’t have the problem of missing link and noisy data [1].

Some preprocess need to be done on bug reports. In these

bug reports desired feature is extracted from Summary,

description and metadata. Metadata contains basic information

like bug priority, bug severity, product, component, and etc.

these features don’t need any preprocess but the text in

description and summary need preprocess. For this purpose

tokens is extracted from a summary and description, after that

they stem and stop words is removed. Feature vector will be

frequenting of these extracted tokens. Patch file that is

attached to the bug report is extracted for the class label.

The patch is a text file that shows the difference between

the original version and fixed version. In this research, Patch

file is identified and extracted with designing and

implementing a parser [11]. Table V shows the characteristics

of data that is used in this research. As you see in the Table

VI, there is 1927 samples that first 70 percent base on bug id

Journal of Communications Technology, Electronics and Computer Science, Issue 5, 2016

ISSN 2457-905X

4

is training sample and 30 percent is test sample. There is 557

classes and 6468 features.

TABLE III. CHARACTERISTICS OF DATA

Module

name
period

Total

number

of bug

reports

Number

of classes

Feature

number

Bookmark

21-07-2001 –

2-04-2010

1927 557 6468

B. Evaluation result

This section describe the performance measure that we used

in our evaluation. Likelihood shows the accuracy of our

method. Equation (15) is likelihood.

(15)

In this equation is bug reports that predict correctly and

 is bug reports that predict incorrectly. Precision shows the

number of the files that predict correctly over the number of

files that is recommended by our method. Recall shows the

number of file that predicted correctly over the number of

fixed file. Equation (16) and (17) shows precision and recall.

(16)

(17)

We donate the set of fixed file to and the number of

recommended file to .

C. Result

ELM and SVM with different kernel is examined on desired

data. Because ELM is simplification of SVM that execute on

single hidden layer feedforward network, this experiment is

done on SVM, ELM and SLFN. As we mentioned before we

use the first 70 percent of data according to bug id for training

set and the remaining for test set. Experiment result for SVM

is shown in Table VIII. As you see in Table IX linear kernel

have the best result in SVM method.

After that we see the result of feedforward neural network

in Table IV. This neural network has two layer that the number

of first layer is the number of features and the number of

second layer is one. We use different permutation of logsig

(logistic sigmoid), tansig(tangent sigmoid), purelin(linear) as

transfer function. As we see in Table V result of neural

network is very low and the best result is for sigmoid transfer

function for first layer and linier transfer function for second

layer.

TABLE VI. RESULT OF SVM IN DIFFERENT KERNELS

kernel Recall precision Likelihood

POLYNOMIAL 9.04396 4.9094 6.3148

RBF 9.04396 4.9094 6.3148

WAVELET 7.5924 3,5861 3,7854

LINEAR 18,4229 11,4137 16.955

SIGMOID 6,6154 3,3112 3,5467

TABLE VII. RESULT OF SLFN

 Recall precision likelihood

classifier

newff+logsig*+logsig**

0.7885 0.3906 0.2595

classifier

newff+tansig+tansig
0.6001 0.1971 0.1730

classifier

newff+tansig+logsig
0.5443 0.2408 0.8996

classifier

newff+logsig+tansig
0.0397 0.3640 1,4532

classifier

newff+logsig+purelin
2,2540 0.7830 2,4221

classifier

newff+tansig+purelin
0.9630 0.4057 1,4013

 *transfer function in first layer ;**transfer function in second layer

In this step KELM method is done. Table XIV and XV is

shown the result. Table XVI show the best parameter for each

kernels in ELM. According to best parameters, Table XVII

shows evaluation result for five kernels. As we see in the

table, ELM method have better result compared to SVM. As

you see in the table RBF kernel has the best result in ELM. In

Fig. 2 ELM and SVM compared to each other. As you see

RBF kernel of ELM has the best result.

TABLE VIII. DIFFERENT PARAMETERS OF ELM

 𝝺 Parameter1 Parameter2 Parameter3

POLYNOMIAL 248 1 0.2 -

RBF 0.9 19 - -

WAVELET 100 4 5 1

LINEAR 1 1 - -

SIGMOID 300 5 10 -

Journal of Communications Technology, Electronics and Computer Science, Issue 5, 2016

ISSN 2457-905X

5

TABLE IX. RESULT OF DIFFERENT KERNEL IN ELM

 Recall precision Likelihood

POLYNOMIAL 31.514 16.581 32.093

RBF 31.55 16.60 32.266

WAVELET 18.3391 10.3022 20.7536

LINEAR 24.9476 13.0911 25.8823

SIGMOID 20.3978 10.0139 16.4879

IV. CONCLUSION

Trying to keep the software quality is vital in software

projects. Despite all these effort, developers face with lots of

bug reports. Since fault localization is time consuming and

overwhelming, researchers trying for automating the bug

localization process. In this paper we use kernel base extreme

learning machine for bug localization.

In future research, we can use the various method of

extreme learning machine to improve the results. Also, we can

use multiple kernel extreme learning machine for improving

the result.

REFERENCES

[1] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this bug?
A two-phase recommendation model,” IEEE transactions on software

Engineering, vol. 39, no. 11, pp. 1597-1610, 2013.

[2] M. Weiser, ”Program Slicing,” Proc. Of the 5th international

conference on software engineering, no. 4, 1984, pp. 352-357

[3] H. ledgard and M. Weiser, “Programmers Use Slices when

Debugging,” Communications of ACM, vol. 25, no. 7, pp. 446-452,
1982.

[4] Korel, Bogdan, and Janusz Laski. "STAD-A system for testing and

debugging: User perspective." Proc. of the Second workshop on
software testing, verification, and analysis, 1988, pp. 13 - 20.

[5] C. Liu, et. al., "Statistical debugging: A hypothesis testing-based
approach," IEEE Transactions on software engineering, vol. 32, no. pp.

831-848, 2006.

[6] W. Lafayette, “Retrieval from Software Libraries for Bug
Localization : A Comparative Study of Generic and Composite Text

Models,” In proc. of the 8th working conference on mining Software
repositories, 2011, pp. 43-52.

[7] J. Zhou, H. Zhang, and D. Lo, “Where Should the Bugs Be Fixed ?

More Accurate Information Retrieval Based Bug Localization Based
on Bug Reports,” 34th international conference of software

engineering (ICSE), 2012, pp. 14-24.

[8] G. Huang, S. Member, H. Zhou, X. Ding, and R. Zhang, “Extreme
Learning Machine for Regression and Multiclass Classification,” vol.

42, no. 2, pp. 513–529, 2012.

[9] G. H. Ã, Q. Zhu, and C. Siew, “Extreme learning machine : Theory

and applications,” vol. 70, pp. 489–501, 2006.

[10] N. Cristianini and J. Shawe-Taylor, “An Introduction to Support

Vector Machines: And Other Kernel-based Learning Methods.” New
York, NY, USA: Cambridge University Press, 2000.

[11] N. Bettenburg, et. al., “Extracting Structural information from bug

reports,” Proceeding of the 2008 international working conference on
mining software repositories, ACM, 2008.

0

5

10

15

20

25

30

35

Recall precision Likelihood

polynomial/SVM polynomial/ELM RBF/SVM

RBF/ELM wavelet/SVM wavelet/ELM

Linier/SVM Linier/ELM Sigmoid/SVM

Sigmoid/ELM

Fig 2. Comparison between SVM and ELM.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=211

