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Abstract— Bug localization uses bug reports received from 

users, developers and testers locate buggy files. Since finding a 

buggy file among thousands of files is time consuming and 

tedious for developers, various methods based on information 

retrieval is suggested to automate this process. In addition to 

information retrieval methods for error localization, machine 

learning methods are used to. Machine learning-based approach, 

improves methods of describing bug report and program code by 

representing them in feature vectors. Learning hypothesis on an 

Extreme Learning Machine (ELM) has been recently effective in 

many areas. This paper shows the effectiveness of non-linear 

kernel of ELM in bug localization. Furthermore the effectiveness 

of Different kernels in ELM compared to other kernel-based 

learning methods are analyzed. The experimental results for 

hypothesis evaluation on Mozilla Firefox dataset show the 

effectiveness of Kernel ELM for bug localization in software 

projects. 

Keywords— machine learning; Extreme learning machine; 

information retrieval. 

I. INTRODUCTION  

Quality of software is vital for the success of software 

project. However a lot of effort is made for increasing the 

quality of software project, but still maintainers find 

themselves face with a stream of bug reports. Once a bug 

report entered the system and approved, developers should 

investigate buggy source code files and solve them. Using bug 

report to find buggy files in a large software system with lots of 

bug reports is time consuming and tedious [1].  

There are two methods for bug localization. Some methods 

are based on test cases and another group is based on bug 

reports. There are a variety methods based on test cases that do 

the same thing, but in a different manner [2], [3], [4], [5]. The 

second group that based on bug reports are worked in two 

categories, information retrieval and machine learning. In 

recent years, researchers have been using information retrieval 

methods to find buggy files. They suppose the bug reports as a 

query and rank the source code files according to the 

relationship between the bug report and source code files. 

Developers examine the returned files and solve the defect [6], 

[7]. In machine learning based method, bug report represents as 

a feature vector and source code files is the class labels of 

dataset [1]. 

In this paper, we use the content of bug report and different 

methods based on machine learning to predict buggy files. 

Although machine learning based method used in a variety 

researches area, but there are few researches on bug 

localization based on bug reports that uses machine learning 

methods [1].  Because of this, we focus on machine learning 

methods. Therefore, first, we extract different information such 

as summary, description and meta-data from bug reports. We 

train our model with 70 percent of bug reports then test it with 

the remaining data. Since Extreme Learning Machine (ELM) 

and the kernel-base of ELM have been used in different 

applications of machine learning and in most of the 

applications have better result than other kernel-based method 

such as Support Vector Machine (SVM), in this paper we use 

Kernel Extreme Learning Machine (KELM) [8] to locate the 

bug. Since ELM method like SVM method are developed in 

different kernels, in this paper KELM is compared with kernel-

based SVM methods. The evaluation result of this research on 

Mozilla dataset showed the effectiveness of RBF kernel in 

ELM method.  

The remainder paper is organized as follows: section 2 

describes ELM method, section 3 describes Evaluation results 

and section 4 discusses conclusion and future work. 

 

II. EXTREME LEARNING MACHINE 

In this section we summarize the method of ELM [8]. In two 

recent decades, SVM has been used in many applications of 

machine learning. It is important that ELM works on single 

hidden layer feedforward network (SLFN). In ELM, hidden 

layer doesn’t need to be tune and transfer function of this layer 

is specific. 

A. ELM models based on constraint-optimization 

First time ELM developed for single hidden layer 

feedforward neural networks and after that extended to 

“generalized” SFLN that neurons doesn’t look like each other. 

Fig. 1 shows SLFNs that has a L hidden node.  
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Fig. 1. Single hidden layer of the neural network. 

 

 

The output function of SLFN will be like (1): 

(1)  ( )  ∑    ( )

 

   

  ( )  

In this equation, function  ( )  mapped to d-dimension 

input space to L-dimension hidden layer feature space.   is a 

weighted vector between hidden layer and output layer. 

For example, if we had binary class classification, decision 

function of ELM will be like (2): 

(2)  ( )      ( ( ) ) 

In contrast to the common learning method, is that ELM not 

only tries to minimize the training error, but also try to 

minimize the norm of output weight. Based on Bartlett’s 

theory [9], minimizing the output norm in addition to 

minimizing train error bring better generalization in 

performance. ELM function that tries to minimize training 

error and norm of weight will be like (3): 

(3)                               
 

In (3) H is hidden layer matrix and define as follow: 
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In fact minimizing       is equivalent to maximizing the 

margin between two class in binary class classification that 

means maximizing the 
 

     
 . 

The minimal norm least square method has been used in ELM 

method for optimization as follow: 

(5)       

 

In (5)    is the Moore–Penrose generalized inverse of matrix 

H [35], [36]. The orthogonal projection method is one of ways 

that calculate Moore–Penrose generalized inverse of matrix H. 

This method is used when     isn’t a singular matrix and we 

have     (   )      OR     that is not singular and 

      (   )   is true. According to the ridge regression 

theory, one can add a positive value to the diagonal of H
T
H or 

HH
T
; the result tends to have better generalization 

performance. So the output weight can be like (6) and (7): 
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In contrast to SVM methods in ELM mapping function has 

been known [10]. Various form of mapping function in SLFNs 

is shown in Table І. 

TABLE I. DIFFERENT MAPPING FUNCTION FOR SLFNS 

Equations Name of function 

 (     )  
 

      ( (     ))
 Sigmoid function 

 (     )  {
               
                

 hard_limit function 

 (     )      (        ) Gaussian function 
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multiquadric 

function 

 

 

B.  Different form of ELM 

ELM has different models for working with different form of 

data. Remainder of this section present the equations about 

classification with one output and multi output. After that 

using kernels for ELM improvement will be discussed. 

1) ELM multiclass classification with single output 

ELM can estimate every continues function. Because of this 

feature, one possible way for multiclass classification is to 

label the output with attention to ELM output. Equation (8) 

show the optimization problem. 

(8) 
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For solving ELM, we should solve the dual optimization 

problem that is shown in (9). 

(9) 
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2) multi class classification with multi output 

In this case, we have m class and m output. If one class was p 

which we see as follow: 

(10) 
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In this case optimization problem is like an equation (11); 

(11)                      
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Its dual of an optimization problem is like (12): 

(12) 
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3) ELM based on kernel 

If mapping function was unknown, we can use kernel in ELM. 

Equation (13) show the kernel base-ELM. 

(13)                    (  )  (  )   (     ) 

In this way output function can be like (14): 

(14) 
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As you know, in SVM binary class classification training 

data split with line. This method works when the problem was 

linear but if the problem was nonlinear, instead of using 

nonlinear model, transfer the problem to new space and using 

linear model to solve the problem. Actually the linear model 

in new space is equivalent to nonlinear model in original 

space. This paper cover five kernel function in Table II. 

 

 

TABLE II.  DIFFERENT KERNELS USE IN THIS PAPER 

Param

eter 
formula 

Kernel 

name 

NO  (   )      Linear 

   (   )      ( 
      

   
) 

RBF 

(Gaussian) 

c, d  (   )  (     )  Polynomial 
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Tangent) 
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Wavelet 

III. EXPERIMENTAL RESULTS  

In this section, ELM with five kernels which discuss in 

Table IV compare with each other. After that for seeing the 

effectiveness of ELM, this method compares to kernel base 

SVM and feed forward neural network.  

The Dataset that is used for experimental result is one of the 

Firefox modules that contain bug reports [1]. 

A. Dataset 

As mentioned before, dataset that used in this paper is bug 

reports of the Bookmark module in Firefox. The reason of 

using this dataset is that files have been fixed for each bug 

report and have been attached to them. Some projects have 

been needed to have a link between bug report and source 

code file. This link is for identifying the fixed file, but most of 

the time there are lots of missing link that causes noisy data 

[1]. 

Bug reports in Mozilla are directly reviewed by Mozilla 

developers. This developer attaches a patch file in bug reports. 

In the next step these files reviewed by “Core” developers and 

in final step accepted files submit to bug reports. So these data 

don’t have the problem of missing link and noisy data [1]. 

Some preprocess need to be done on bug reports. In these 

bug reports desired feature is extracted from Summary, 

description and metadata. Metadata contains basic information 

like bug priority, bug severity, product, component, and etc. 

these features don’t need any preprocess but the text in 

description and summary need preprocess. For this purpose 

tokens is extracted from a summary and description, after that 

they stem and stop words is removed. Feature vector will be 

frequenting of these extracted tokens. Patch file that is 

attached to the bug report is extracted for the class label.  

The patch is a text file that shows the difference between 

the original version and fixed version. In this research, Patch 

file is identified and extracted with designing and 

implementing a parser [11]. Table V shows the characteristics 

of data that is used in this research. As you see in the Table 

VI, there is 1927 samples that first 70 percent base on bug id 
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is training sample and 30 percent is test sample. There is 557 

classes and 6468 features. 

 
TABLE III. CHARACTERISTICS OF DATA 

Module 

name 
period 

Total 

number 

of bug 

reports 

Number 

of classes 

Feature 

number 

Bookmark 

21-07-2001 – 

2-04-2010 

1927 557 6468 

B. Evaluation result 

This section describe the performance measure that we used 

in our evaluation. Likelihood shows the accuracy of our 

method. Equation (15) is likelihood.  

(15)           
  

      

 

 

In this equation    is bug reports that predict correctly and 

    is bug reports that predict incorrectly. Precision shows the 

number of the files that predict correctly over the number of 

files that is recommended by our method. Recall shows the 

number of file that predicted correctly over the number of 

fixed file. Equation (16) and (17) shows precision and recall. 

(16)           
       

    
 

(17)        
       

    
 

We donate the set of fixed file to    and the number of 

recommended file to   . 

C. Result 

ELM and SVM with different kernel is examined on desired 

data. Because ELM is simplification of SVM that execute on 

single hidden layer feedforward network, this experiment is 

done on SVM, ELM and SLFN. As we mentioned before we 

use the first 70 percent of data according to bug id for training 

set and the remaining for test set. Experiment result for SVM 

is shown in Table VIII. As you see in Table IX linear kernel 

have the best result in SVM method. 

After that we see the result of feedforward neural network 

in Table IV. This neural network has two layer that the number 

of first layer is the number of features and the number of 

second layer is one. We use different permutation of logsig 

(logistic sigmoid), tansig(tangent sigmoid), purelin(linear) as 

transfer function. As we see in Table V result of neural 

network is very low and the best result is for sigmoid transfer 

function for first layer and linier transfer function for second 

layer. 

TABLE VI.  RESULT OF SVM IN DIFFERENT KERNELS 

kernel Recall precision Likelihood 

POLYNOMIAL 9.04396 4.9094 6.3148 

RBF 9.04396 4.9094 6.3148 

WAVELET 7.5924 3,5861 3,7854 

LINEAR 18,4229 11,4137 16.955 

SIGMOID 6,6154 3,3112 3,5467 

 

TABLE VII.  RESULT OF SLFN 

 Recall precision likelihood 

classifier 

newff+logsig*+logsig** 

0.7885 0.3906 0.2595 

classifier 

newff+tansig+tansig 
0.6001 0.1971 0.1730 

classifier 

newff+tansig+logsig 
0.5443 0.2408 0.8996 

classifier  

newff+logsig+tansig 
0.0397 0.3640 1,4532 

classifier  

newff+logsig+purelin 
2,2540 0.7830 2,4221 

classifier 

newff+tansig+purelin 
0.9630 0.4057 1,4013 

 *transfer function in first layer ;**transfer function in second layer 

 

In this step KELM method is done. Table XIV and XV is 

shown the result. Table XVI show the best parameter for each 

kernels in ELM. According to best parameters, Table XVII 

shows evaluation result for five kernels. As we see in the 

table, ELM method have better result compared to SVM. As 

you see in the table RBF kernel has the best result in ELM. In 

Fig. 2 ELM and SVM compared to each other. As you see 

RBF kernel of ELM has the best result. 

 
TABLE VIII.  DIFFERENT PARAMETERS OF ELM 

 𝝺 Parameter1 Parameter2 Parameter3 

POLYNOMIAL 248 1 0.2 - 

RBF 0.9 19 - - 

WAVELET 100 4 5 1 

LINEAR 1 1 - - 

SIGMOID 300 5 10 - 
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TABLE IX. RESULT OF DIFFERENT KERNEL IN ELM 

 

 Recall precision Likelihood 

POLYNOMIAL 31.514 16.581 32.093 

RBF 31.55 16.60 32.266 

WAVELET 18.3391 10.3022 20.7536 

LINEAR 24.9476 13.0911 25.8823 

SIGMOID 20.3978 10.0139 16.4879 

 

 

 

IV. CONCLUSION  

Trying to keep the software quality is vital in software 

projects. Despite all these effort, developers face with lots of 

bug reports. Since fault localization is time consuming and 

overwhelming, researchers trying for automating the bug 

localization process. In this paper we use kernel base extreme 

learning machine for bug localization.  

In future research, we can use the various method of 

extreme learning machine to improve the results. Also, we can 

use multiple kernel extreme learning machine for improving 

the result. 
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Fig 2.  Comparison between SVM and ELM. 
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